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SUMMARY 

A method that makes it feasible to incorporate global reactor information into 

homogenized parameters used for nodal diffusion theory analyses was developed. Global 

reactor information can be used sucessfully to find homogenized parameters that are more 

accurate than infinite lattice homogenized parameters, but past approaches are expensive. 

An iterative method was developed that achieves the objective by using linear correlations 

to model changes in the homogenized parameters due to current-to-flux ratios from the 

nodal solution. 

A numerical approach was used to analyze several one- and two-dimensional 

geometries. The one-dimensional analyses showed that the edge-to-average flux ratio from 

the lattice homogenization should be correlated rather than the flux discontinuity factor. 

Accurate flux discontinuity factors axe then found from the edge-to-average flux ratio 

correlation. It was found that accurate correlations required a boundary condition, the 

shifted circle condition,, that is uncommon to transport theory codes. This boundary 

condition allows a current to be created on a node boundary but other higher odd 

moments of the angular flux are equal to zero. It was demonstrated that this effect caused 

the scalar flux on the surface of a node to be more accurate than other transport theory 
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boundary conditions. The one-dimensional analyses also showed that linear correlations 

are sufficiently accurate to model the global reactor effects on the homogenized 

parameters. 

Two-dimensional analyses of light water reactor assemblies demonstrated that the 

iterative procedure reduces the assembly power errors by a factor of two compared to 

using infinite lattice homogenized parameters without correlations. The analyses also 

confirmed that the method is independent of the flux approximation used in the nodal 

code and independent of the diffusion coefficients provided that reasonable diffusion 

coefficients are used. However, it was also shown that more accurate flux approximations 

and diffusion coefficients require only one or two adjustments to the homogenized 

parameters to achieve practical convergence on the homogenized parameters. 
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CHAPTER I 

INTRODUCTION TO NODAL ANALYSIS 

1.1 Development of Nodal Analysis Methods 

During the 1980' s, several nodal codes for the solution of me neutron diffusion 

equation developed into popular reactor analysis tools.1,2'3'4 Lawrence reported that the 

accuracies of nodal codes are the same factor of ten as fine mesh finite difference 

calculations for the IAEA benchmark problems.5 Despite their proven accuracy, there are 

some basic approximations in the 'nodal analysis routines. 

Development of nodal codes began in the 1960's with the FLARE6 code. The 

initial purposes of npdal codes were to serve as reactor simulators rather than detailed 

analysis tools. With this purpose in mind, a pin-by-pin analysis was not necessary so 

nodal codes modelled an entire fuel assembly as one node. The FLARE code used a 

one-and-a-half group model ( no thermal leakage ) and adjusted reactor parameters such 

as reflector albedos to fit actual operating experience. Due to these approximations, early 

nodal codes of the FLARE type could diverge from a solution in the limit of infinitely 

small mesh spacing. To avoid this problem, consistently formulated nodal codes1'35 ( or 

modern nodal codes ) began emerging during the 1970's. These codes avoid the use of 

empirical parameters and reflector albedos and use higher ordered flux approximations.5 

This allows consistently formulated nodal codes to converge and yield accurate results in 
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the limit of an infinite number of spatial meshes. Tins is also a feature of finite difference 

equations. As the mesh spacing decreases, the Taylor series approximation for derivatives 

becomes more accurate.7 A distinction between nodal diffusion theory and fine mesh 

finite difference is the transverse integrated procedure. In this procedure, the diffusion 

equation is integrated over the transverse directions to supply leakage terms. In essence, 

nodal diffusion equations are one-dimensional equations with known leakages in the 

transverse direction. Conversely, finite difference equations solve for fluxes in all 

surrounding nodes. 

After consistently formulated nodal codes developed, the question remained how 

to generate homogenized reactor parameters from the heterogeneous node. Nodal codes 

model a large heterogeneous region of the reactor ( often an entire fuel assembly ) as a 

single homogeneous node by using equivalent homogenized parameters. The equivalent 

homogenized parameters are cross sections and diffusion coefficients that represent the 

region or node. Also included as homogenized parameters are heterogeneity factors or 

flux discontinuity factors which add freedom to the equation set to allow one solution 

method to give results equivalent to another solution method. Equivalent homogenized 

parameters are discussed in Section 1.2. In the late 1970's, Koebke provided the first 

homogenization technique capable of reproducing exact reference results. Exact refers to 

a known reference solution such as a heterogeneous transport theory solution. Koebke 

named this homogenization method equivalence theory8,9 because it allowed a nodal 
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diffusion theory solution to yield equivalent results from a reference solution. Smith later 

developed a different approach called generalized equivalence theory.10'11 

The global reactor calculation provides integral information concerning each node. 

This information is volume integrated reaction rates and fluxes and surface integrated 

currents of the node. However, in addition to integral results, a reactor analysis also needs 

to supply local parameters, such as individual fuel pin powers. Much work during the 

1980's addressed this dehomogenization problem.8'912'13,14 There are three ways to 

calculate local information. One method uses the surface integrated currents as boundary 

conditions to a detailed heterogeneous calculation. This method is accurate but also 

expensive. The second method is simply to combine global flux tilts in a node with a 

form function created during the homogenization process. The homogenization process 

renders detailed information about heterogeneities within the node. Specifically, an 

intranodal flux shape is available. The intranodal flux shape provides a form function for 

the power output of each pin in the node without accounting for the global flux shape in 

the node. This method is computationally cheap but also less accurate. It superimposes 

the x and y direction flux shapes in a node together as an approximation to the global flux 

shape for that node. This action often overpredicts the flux along the perimeter of the 

node and especially at the corners of the node. Another method uses global reactor 

information to approximate corner point fluxes for each node. Corner point fluxes 

eliminate the error of overpredicting the global flux shape along the perimeter of the node 

and as a result, reduce errors throughout the node. This method does not use the principle 
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of superposition to multiply the x and y direction flux shapes together, but uses a more 

analytic solution to obtain the global flux shape in the node. The method is both accurate 

and inexpensive. 

In conclusion, nodal analyses consist of three distinct steps.9 The homogenization 

process collapses each heterogeneous node into a set of equivalent homogenized 

parameters required by the nodal code. Then, the nodal code calculates integral results of 

a global reactor solution and lastly, the dehomogenization process finds local reactor 

characteristics. Since global reactor information is unavailable during the homogenization 

process, the homogenized parameters do not account for the effect that neighboring nodes 

have on them. There are several methods to include these interassembly effects into the 

homogenized parameters, however., methods previously developed are expensive and, as 

a result, are impractical to employ in the nodal analysis procedure. In this thesis, a 

method that is feasible for including interassembly effects to improve the accuracy of the 

homogenized parameters is presented. Also, it is shown that the improved homogenized 

parameters improve the accuracy of the global reactor solution. 

1.2 Formally Exact Homogenization Schemes 

In this section, we will assume that an exact solution ( or reference solution ) is 

available and can be used to find homogenized parameters. It is proven that traditional 

flux-weighted constants and an additional homogenization parameter are necessary to 

4 



reproduce integral results of the reference solution. This exercise serves to develop theory 

needed in calculating homogenized parameters for practical cases. 

The goal of homogenization is to preserve certain integral properties8'101115 of each 

node. Koebke provides the following two postulates8 that define a homogenized node to 

be equivalent to the same heterogeneous area. 

"Postulate A: The integral flux and integral reaction rates are conserved 
in the homogenized area. 

i ; - f 

Postulate B: The integral net current? and [Integral fluxes are conserved 
at each interface of this area." 

If the integral reaction rates and net currents are conserved, then the neutron balance 

equation from a nodal code is equivalent to the volume integrated neutron balance 

equations of a heterogeneous reference solution. This ensures that the multiplication factor 

of the nodal code will be identical to the reference multiplication factor. For the nodal 

neutron balance equation to be equivalent to a reference case, we only need to conserve 

reaction rates within the node and the sum of the leakages over all faces of the node. 

However, the second postulate states more than the sum of the leakages on all faces. The 

second postulate requires conservation of the net current along each surface. Koebke 

stated this postulate to ensure thai: the coupling of the neutron current between adjacent 

nodes is correct. The first postulate also contains a condition on the average flux in the 

volume. This condition provides a way to find equivalent homogenized cross sections 
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before obtaining a nodal solution. Conserving the suiface integrated fluxes provides a 

method to account for deficiencies in the nodal code flux approximation. 

We preserve reaction rates by requiring 

a = a,t,f,..:etc., 
9 = 1.2....G 

(1.1) 

where a is a cross section type and g is the energy group. The symbols " and ~ refer to 

homogeneous and heterogeneous values, respectively. By definition, the homogenized 

cross section is a constant parameter throughout the volume of the node. Therefore, we 

can remove it from the volume integral on the left side of equation (1.1). Koebke's first 

postulate states that the volume integral of the flux in the homogenized area must equal 

the volume integral of the flux in the heterogeneous area, or 

fyj>g(T) dv = fvq>g(r) civ. (i.2) 

Thus, the proper homogenized cross section is 

/„s0i,(r)*,cr)dv 

j *ff(r)dv 
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Using Fick's law, we preserve the surface integrated currents on a particular 

surface, k, by requiring 

- / ^ / v f y O - d S = /s»J^)-dS (1.4) 

where the diffusion coefficient is constant along the surface of the node. The proper 

homogenized diffusion coefficient is 

D* -• - - ^ . (1-5) 
/ s / V^(f ) -dS 

Equation (1.5) is the only method to define rigorously correct diffusion coefficients 

simply because diffusion theory is based on Fick's law, equation (1.4). The numerator of 

equation (1.5) is a value from the reference solution and therefore creates no problem for 

defining a diffusion coefficient ( assuming the reference solution is known ). However, 

the denominator of equation (1.5) is dependent on the nodal code flux approximation. For 

most flux approximations, the derivative in the denominator of equation (1.5) is a known 

function of the volume integrated flux and the surface integrated edge fluxes. From 

Koebke's two postulates, these values are also known from the reference solution. 

Therefore, it is easy to find a diffusion coefficient for each surface of each node in the 

global reactor problem. 
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However, specifying a different diffusion coefficient for each node surface is not 

a common practice in reactor physics. The common practice is to use the divergence 

theorem16 to transform the surface integrals of the neutron currents into volume integrals 

and specify one diffusion coefficient for each energy group that is valid on all surfaces 

of the node. Equation (1.6) demonstrates the divergence theorem applied to the leakage 

term in the diffusion equation. This action makes all terms in the neutron balance 

equation volume integrals rather than a mixture of volume integrals and surface integrals. 

fskJg(?) • dS = / -£/v<fyT) • dS = / -Dg</V
2j>g(T) dV (1.6) 

It is extremely unlikely that equation (1.5) will produce the same diffusion 

coefficient for all surfaces of a node. Therefore, after applying the divergence theorem 

and designating one diffusion coefficient, it is impossible to reproduce the reference 

solution in a rigorous sense unless a degree of freedom is added to the nodal diffusion 

equations. The surface integrated current is an important term in the neutron balance 

equation and the average flux is crucial in calculating reaction rates. Consequently, the 

degree of freedom cannot be added to these variables. However, the surface integrated 

edge flux serves only in the flux coupling equation between adjacent nodes. Since there 

is no need to directly conserve the surface integrated flux, a degree of freedom can be 

added to this variable in a way that allows for reproduction of the reference surface 
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integrated edge flux. Equivalence theory provided the first method to define and employ 

the degree of freedom to the neutron balance equations and the coupling equations. 

Equivalence Theory8'9 

Equivalence theory is the name given to the first procedure capable of reproducing 

all integral quantities of a known solution. Koebke8,9 achieved this task by creating an 

additional homogenization parameter that he named the heterogeneity factor. This scheme 

assigns a heterogeneity factor to each surface of node / by 

f « ' s T^i • (L7) 

j » d s 

Koebke's method multiplies the surface integrated fluxes in the nodal equation by the 

heterogeneity factor to arrive at die reference surface integrated fluxes. This satisfies his 

second postulate on the surface integrated edge flux. 

Koebke limited the two heterogeneity factors that lie in a common direction to be 

identical. Thus, he relates the heterogeneity factors on the two opposite sides of a node 

( k and k' ) by 

f * - \k: (1-8) 

where the energy group subscripts are dropped for convenience. Figure 1.1 shows the 

geometry orientation for two adjacent nodes. 
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/+1 

k' 

Figure 1.1. Nomenclature Associated with Two Adjacent Nodes. 
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Under Koebkes' condition, there exists one and only one diffusion coefficient in 

each coordinate direction that can preserve leakages while the heterogeneity factors are 

equivalent on the opposite surfaces of the node. This is because equations (1.7) and (1.8) 

add only one degree of freedom to the diffusion equations per direction. This method 

treats the diffusion coefficient as a purely artificial quantity.11 The diffusion coefficient 

is not found from material properties within the node as it is with traditional flux 

weighted constants. The diffusion coefficient and heterogeneity factor are directionally 

dependent parameters in this method. This is due to the additional requirements for the 

net currents in the other directions. For example, in two-dimensional Cartesian geometries, 

there are four equations for the surface integrated fluxes ( equation (1.7)), four equations 

for the diffusion coefficients ( equation (1.5) ), and one equation for the average flux 

( equation (1.2) ). With the limit on the heterogeneity factor ( equation (1.8) ), the 

equations require directionally dependant diffusion coefficients. Nevertheless, the method 

can reproduce exact results. 

The heterogeneity factor is dependent on the flux approximation used in the nodal 

code. Different flux approximations will result in different edge flux values. This, in turn, 

will result in a distinct heterogeneity factor for any given flux approximation. Therefore, 

the flux approximation used to find the heterogeneity factor must be consistent with the 

flux approximation used in the nodal code. 

The use of heterogeneity factors requires us to modify the flux coupling equation 

between two adjacent nodes. In the actual reactor and in high order solutions, the flux is 
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everywhere continuous. The surface integrated reference flux of node / is equal to the 

surface integrated reference flux of node /+ 1 on the common surface. By employing 

equation (1.7), the flux coupling equation between nodes / and /+ 1 is 

ff/5,£f(T)dS = /c^f(r)dS = 
(1.9) 

. /-_* * * , (T) dS = f̂ , f . * * , (r) dS 

where face k and k' are displayed in Figure 1.1. 

Generalized Equivalence Theory10,11,15 

Smith improved Koebke's equivalence theory to form generalized equivalence 

theory. In this method, each surface of the node has a separate discontinuity factor 

independent of all others. This results in a degree of freedom for each surface of the node 

and each energy group. By making this change, the diffusion coefficient can have any 

arbitrary non-zero value. This allows the diffusion coefficient to be found from material 

properties of the node or by any other preferred method. Regardless of this value of the 

diffusion coefficient ( any non-zero value ), Ihe flux discontinuity factors have added 

enough degrees of freedom to the diffusion equations to allow Koebkes' two postulates 

to hold true. 

Smith defines the flux discontinuity factor the same as Koebke defines the 

heterogeneity factor in equation (1.7). The coupling equation is similar to that of Koebke 



with an important difference. The difference between the two coupling equations is that 

Smith's equation is face dependent while Koebkes equation is direction dependent. 

Because of this difference, equivalence theory has only one set of homogenized 

parameters that can satisfy Koebkes' two postulates while generalized equivalence theory 

has an infinite number of sets of homogenized parameters that satisfy the postulates. 

Both equivalence theory and generalized equivalence theory can reproduce exact 

results. An interesting feature of these methods is that exact results are obtainable even 

when we solve the diffusion equation by approximate methods rather than analytic 

methods91117 assuming again that the exact solution is known. This means that, in 

principle, flux discontinuity factors or heterogeneity factors correct for heterogeneities 

within the node and errors in the diffusion theory approximation. 

1.3 Approximations to Obtain Homogenized Parameters 

For a homogenization scheme to be of practical use, it must be able to 

approximate homogenized parameters without knowledge of a reference solution. The 

formally exact method described in the preceding section assumed that the exact solution 

is available for use. If the exact solution were available, then there would be no need to 

solve the nodal diffusion equations. This section describes the traditional homogenization 

method and the approximate methods of Koebke and Smith. 
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All of the homogenization methods discussed in this section analyze 

two-dimensional slices of the node rather than a three-dimensional node. The axial 

direction of a node usually does not contain any heterogeneities. Therefore, a 

two-dimensional model is appropriate. In some cases such as control rod insertion or grid 

spacers, the axial direction does have strong heterogeneities. Smith and others18 devised 

a method to account for these heterogeneities. 

Traditional Homogenization 

The traditional homogenization method models a fuel assembly as either one node 

or four nodes. The boundary conditions for the node are zero net current boundary 

conditions. If the currents were known, then we could use the currents as boundary 

conditions. However, at the time of homogenization, estimates for the current directions 

and magnitudes are unknown. Therefore, the best guess for the boundary conditions are 

zero net currents. Smith points out that homogenized parameters are primarily dependent 

on the heterogeneities within the node and of secondary importance on the location in the 

reactor.11 This statement supports the use of zero net current boundary conditions. 

After imposing these boundary conditions on a node, the neutron balance equation 

is solved to find a flux profile throughout the node,. There are several different methods 

available to solve the neutron balance equations.. These methods can range from 

continuous energy Monte Carlo methods to fine mesh finite difference methods. In 

traditional lattice homogenization, the flux profile is. used to flux and volume weigh the 

heterogeneous cross sections by using equation (1.3). There are many different methods 
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to calculate diffusion coefficients from the assembly calculation. ' Among these are flux 

and volume weighing either the diffusion coefficient or the transport cross section. 

However, we cannot employ equation (1.5) to define a diffusion coefficient because the 

currents ( numerator of equation (1.5)) are equal to zero. Thus, the diffusion coefficient 

would also equal zero. After making these approximations, enough information is 

available to evaluate equation (1.3) for estimated values of the homogenized cross 

sections and diffusion coefficients. Traditional homogenization methods implicitly 

assumed flux discontinuity factors or heterogeneity factors to be equal to unity. 

Examining equation (1.9) with unity discontinuity factors shows that these equations are 

equivalent to the traditional continuity of flux condition. 

Traditional homogenization still served as the basis for advanced homogenization 

methods after Koebke proved that an additional parameter was necessary. Both Koebke 

and Smith used the zero net current boundary condition to approximate homogenized 

parameters. Koebkes approximation is known as simplified equivalence theory.8 In both 

methods, all cross sections are flux and volume weighted. However, there are differences 

in how the diffusion coefficients and the flux discontinuity factors or heterogeneity factors 

are found in each method. 

Simplified Equivalence Theory89 

Due to the manner that Koebke defines the heterogeneity factor and due to the 

geometric symmetry of PWR assemblies, Koebke could derive simplified equivalence 

theory. Simplified equivalence theory allows a code that does not use heterogeneity 
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factors ( one that implies unit)' values ) to improve global solutions to the reactor 

problem. Also, the method finds the diffusion coefficient from actual material properties 

rather than treating it as an artificial value. 

Consider a two-dimensional slice of a fuel assembly that is perfectly symmetric 

about the center of the node. Equation (1.3) defines the homogenized cross sections of 

the node to be spatially constant. Therefore, if an assembly calculation uses zero net 

current boundary conditions, then the diffusion theory flux profile for the single assembly 

is constant throughout the node. By equation (1.2), the value of the flux is equal to the 

average value found from the heterogeneous assembly calculation. Therefore, the 

denominator of equation (1.7) is equal to the average flux from the heterogeneous 

assembly calculation. Since the heterogeneities in the region are symmetric, the surface 

integrated edge flux on all boundaries are equal to each other thus providing a value for 

the numerator of equation (1.7). Therefore, all surfaces have the same value for the 

heterogeneity factor. This satisfies Koebke's requirement for the heterogeneity factor 

( equation (1.8) ) and no restrictions have been placed on the diffusion coefficient. This 

allowed Koebke to calculate the diffusion coefficient; from actual material properties. 

Furthermore, the homogenized parameters have no directional dependencies and no limits 

are placed on the solution method for the diffusion equation. A single assembly 

calculation such as this corrects only for heterogeneities within the lattice. Since the 

currents are equal to zero on all surfaces, the method cannot correct for the flux 

approximation employed in the nodal code or an errant diffusion coefficient. 
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Koebke named this approximation simplified equivalence theory because he could 

deceive the nodal code and completely remove the heterogeneity factors from the 

diffusion equations. This allowed the nodal code to use the traditional flux coupling 

equation rather than the discontinuous flux coupling equation shown by equation (1.9). 

Nodal codes expand the second order derivative in the diffusion equation by 

approximating the derivative with an average flux and fluxes at the edges of the region. 

Koebke replaces the homogeneous edge fluxes in the diffusion equation with the 

heterogeneous edge flux by rearranging equation (1.7). This substitution incorporates the 

heterogeneity factor into the neutron balance equation ( nodal diffusion equation ) and the 

current coupling equations. The fluxes on the surface of the node are now the 

heterogeneous surface fluxes that are continuous at the node interfaces. Koebke separates 

the heterogeneity factor away from the surface fluxes by combining it with the diffusion 

coefficient. He defines a simplified diffusion coefficient by 

£ , = —'. (1-10) 

However, the diffusion equation multiplies the diffusion coefficient and average flux 

together. If the simplified diffusion coefficient replaces the actual diffusion coefficient, 

then, as a conservation principle, we must multiply the average flux by the heterogeneity 
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factor. In simpler terminology, we are multiplying and dividing this term by the 

heterogeneity factor. Thus, Koebke defines a simplified average flux as 

* / = f / * , . < U 1 > 

Continuing, if the simplified flux replaces the actual flux, then, as before, we must divide 

the cross sections by the heterogeneity factor to preserve reaction rates. Accordingly, 

Koebke divides all cross sections by the heterogeneity factor to form the simplified cross 

sections, 

£ = ^ii (1.12) 
• • ' - t , • 

Before starting the diffusion theory calculation, all cross sections and the diffusion 

coefficient for each node and energy group are divided by the heterogeneity factor of that 

node and energy group. This completely removes the heterogeneity factor from the 

neutron balance equation and the current coupling equations and allows use of the 

traditional flux coupling equation,. Once the diffusion calculation converges, the simplified 

average flux is divided by the heterogeneity factor to arrive at the actual average flux. 

The edge fluxes are the actual heterogeneous edge fluxes. 
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Generalized Equivalence Theory ' ^ 

Koebke's simplified equivalence theory works ideally for fuel assemblies that are 

one-eighth symmetric; however, BWR assemblies are only one-half symmetric at best. 

Asymmetric nodes must employ Smith's homogenization scheme. The assembly 

calculation with zero net current boundary conditions computes a flux shape throughout 

the node. As before, if the nodal cross sections are to be spatially constant, then the flux 

shape from a diffusion calculation on the single node is also constant and equal to the 

average flux of the heterogeneous assembly calculation. The heterogeneous assembly 

calculation provides surface integrated fluxes for the numerator of equation (1.7) and the 

above argument provides a value for the denominator of equation (1.7). For asymmetric 

regions, the surface integrated fluxes from the lattice calculation are not equal on all 

surfaces and therefore each surface of the node will have a different flux discontinuity 

factor. 

Since the flux discontinuity factors for the surfaces of a node are different, we 

cannot divide them into the cross sections and the diffusion coefficient for the node 

without creating several cross product terms. Therefore, we must incorporate the 

discontinuous flux coupling equation ( equation (1.9)) into the nodal code. 

Heterogeneity factors are not definable for asymmetric regions when the current 

boundary conditions are equal to zero. This is because the diffusion theory flux shape in 

a single node with zero net current boundary conditions is always flat despite the 

diffusion coefficient or the flux approximation employed in the nodal equations. 
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Therefore, it is impossible to define a heterogeneity factor when the heterogeneous 

assembly calculation computes different values of the surface integrated edge fluxes and 

when the diffusion theory flux profile is flat. As in Koebke's single assembly lattice 

homogenization technique, Smith's generalized equivalence theory corrects only for 

heterogeneities within the lattice and not for the nodal code flux approximation or 

discrepancies in the diffusion coefficient. 

In this thesis, we will from now on use flux discontinuity factors rather than 

heterogeneity factors to avoid the restrictions on directional dependencies and 

complications due to using zero net current boundary conditions on asymmetric lattices. 

1.4 Methods for More Accurate Homogenized Parameters 

There are schemes that can obtain more accurate homogenized parameters than the 

methods discussed in Section 1.3 but at increased computer expenses. The only error in 

the methods discussed in Section 1.3 is the zero net current boundary condition. A more 

accurate method must therefore have a better approximation for the boundary conditions 

used in the assembly calculation. There are two ways to accomplish this task. One method 

is to extend the geometry around the assembly calculation. The other is an iterative 

technique between the lattice homogenization process and the global reactor calculation. 

Extended Geometry Calculations 

Extended geometry calculations model the region of interest and its closest 

neighbors. There are different ways to perform extended geometry calculations. The two 
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models discussed in this segment still employ zero net current boundary conditions. Other 

methods not discussed can use periodic boundary conditions if the geometry shows 

periodic tendencies. For example, some reactors may arrange a small group of assemblies 

periodically thus providing a strong argument to use periodic boundary conditions. 

One extended geometry model surrounds the region of interest by all of its closest 

neighbors, as displayed in Figure 1.2.10 The solid lines in the figure represent node 

boundaries and assembly boundaries. Small squares within each node portray 

heterogeneities. The five-node extended geometry still employs zero net current boundary 

conditions but the boundaries are not next to the region of interest but on the neighboring 

regions. 

Since the material and geometric properties of the neighboring regions are most 

likely different from the region of interest, a'current will be present at each interface. The 

current-to-flux ratio ( using the average flux of the node ) of the extended geometry 

calculation will be a good estimate of that found from a global calculation. However, the 

current is an estimated value because the zero net current boundary conditions on the 

neighboring regions are estimates. Nevertheless, this extended geometry method provides 

better estimates of the current directions and magnitudes on each surface of the node than 

zero net current boundary conditions. This leads to a more accurate intranodal flux shape 

needed to homogenize cross sections, specify the diffusion coefficient, and calculate the 

flux discontinuity factors. 
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Figure 1.2. Five-Node Extended Geometry Representation. 
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Figure 1.3 displays another way to model an extended geometry calculation. This 

design is the color set or supercell design.20 Assemblies of common geometric 

characteristics and burnup are assigned a similar color. The four assembly portions form 

a color set when located next to one another. This layout is useful for PWR assemblies 

because of their symmetry. The current at the center of a symmetric assembly will be 

closer to zero than at a boundary where material properties between adjacent nodes are 

different. As before, the solid lines distinguish the node boundaries. The dashed lines are 

assembly boundaries. Figure 1.3 shows four nodes per assembly. We can estimate that the 

currents along the midplane of each assembly are near but not exactly equal to zero. 

Therefore, this method also assumes zero net current boundary conditions. The interior 

solid lines of the figure are node boundaries where larger currents are expected. 

Although the boxed area of Figure 1.3 is the same size as an assembly, this 

method does require more computer resources than the single assembly calculation. If 

each assembly is symmetric, the single assembly calculation discussed in Section 1.3 can 

use this knowledge to model only one-eighth of'the assembly. Thus, the color set model 

would be eight times larger than the single assembly model. This design also increases 

computer resources because the color sets are location dependent. As an approximation, 

there is the same number of color sets in a reactor as there are assemblies. In the single 

assembly calculation, there are several assembly types that we can use at any location in 

the reactor. Although the number of color set calculations can be reduced, there are still 

many more combinations of color sets than there are assembly types. 
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Figure 1.3. Color Set Extended Geometry Representation. 
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Iterative Techniques 

At the end of the global calculation, approximate values for the currents are known 

compared to average fluxes in the node. These currents can be used to aid in finding more 

accurate homogenized parameters. Because zero net current boundary conditions were 

used to calculate the homogenized parameters for the global reactor calculation, the 

currents retrieved from the global reactor calculation aire approximate values, but they are 

exceedingly good approximations. The information from the global reactor solution can 

be employed in one of three ways to improve the homogenized parameters. The currents 

can serve as boundary conditions to rehomogenize the node and then the improved 

homogenized parameters used in the global calculation to obtain more accurate global 

results. Another method uses response matrices and the global reactor information to 

update the homogenized parameters. A third method uses the global reactor information 

to adjust the homogenized parameters based on correlations. 

The rehomogenization approach is an expensive process. Many nodes in a reactor 

are similar in material composition and geometric form, but all nodes will have different 

currents across their boundaries. This means that each node will need homogenization 

again using the currents from the global reactor solution. This leads to more accurate 

homogenized parameters, but the computer resources needed to rehomogenize each node 

makes this an unattractive process. 

Smith showed that this method cam successfully improve values for the 

homogenized parameters. Smith used fine mesh diffusion calculations to find 
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homogenized parameters.10 After completing a global calculation using infinite lattice 

homogenized parameters, the currents and assembly powers serve as input conditions to 

rehomogenize each assembly. The resulting set of homogenized parameters were closer 

to reference values than the infinite lattice homogenized parameters. This, in turn, leads 

to a more accurate global reactor solution. The preceding steps form one iteration. In 

Smiths' examples, the method converged in very few iterations (two or three iterations ). 

Another iterative method studied by Cheng, Hoxie, and Henry17 employed response 

matrices to update the homogenized parameters. This method computes response matrices 

based on a net current across segments of a node face rather than partial currents. In the 

conventional response matrix method,7 the response matrices reflect how outgoing partial 

currents change due to an incoming partial current on only one surface. The conventional 

response matrix method does not directly produce a surface integrated edge flux needed 

to compute discontinuity factors. By basing the response matrices on net currents, the 

surface integrated flux is available and discontinuity factors are obtainable. This method 

also updates homogenized cross sections. However, the method finds net current response 

matrices from partial current response matrices. In several cases studied by Cheng, Hoxie, 

and Henry, the response matrice technique for improving homogenized parameters 

moderately improved the accuracy of the homogenized parameters and the global solution. 

Koebke8 and Rahnema21,22 have introduced the concept of correlating the 

homogenized cross sections to global reactor information. They rendered general forms 

for correlations that the homogenized cross sections should follow. Both Koebke and 
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Rahnema propose the same characteristics. In the correlation equations, the homogenized 

parameters change as a function of the current-to-flux ratio. The correlations are linear 

and therefore contain no cross product terms. Their correlation is 

S<7,cr ~ 2<7,a 

G K J 
9 
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(1.13) 

In this correlation, the homogenized cross section, E , would change as the current-to-flux 

ratio deviates from the zero net current value used to calculate the initial homogenized 

cross section, 2 ° . 

To increase the accuracy of the global reactor calculation, the homogenized cross 

sections and flux discontinuity factors must be improved simultaneously. Smith showed 

that reference homogenized cross sections used with infinite lattice flux discontinuity 

factors actually leads to greater errors than using all infinite lattice homogenized 

parameters.11 Similarly, he also showed that using infinite lattice cross sections with 

reference flux discontinuity factors also leads to greater errors than using all infinite 

lattice homogenized parameters. Therefore, equation (1.13) should apply not only to the 

homogenized cross sections but to the flux discontinuity factors as well ( or a relationship 

involving the flux discontinuity factors ). Smith states that these errors arise because the 

infinite lattice cross sections and flux discontinuity factors are a matched set of 

equivalence parameters.11 This implies that any further improvements also should match 
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the infinite lattice calculation method. In particular, the same method used in lattice 

homogenization should decide any correlation parameters. 

Equation (1.13) provides some promising '.characteristics. If it is possible to find 

k 

the correlation coefficients aga before starting the global reactor calculation, then the 

homogenized parameters can be adjusted during operation of the nodal code as needed. 

This allows us to improve the accuracy of the global reactor solution without iterating 

between the nodal calculation and the lattice homogenization calculation. Also, 

equation (1.13) implies that the homogenized parameters and correlation coefficients are 

independent of position in the reactor. If true, the correlation coefficients apply to all 

similar assemblies much like the infinite lattice homogenized parameters. 

In an iterative technique such as this, the question arises if the solution converges 

toward or diverges away from a reference solution. Smith answered this question by first 

calculating a global reactor solution using a homogenization code (the homogenization 

code was a fine mesh finite difference calculation ). Then he performed an iterative 

technique coupling the homogenization code and the nodal code. The homogenization in 

this case was on each node. Smith showed that the global solution of the iterative 

technique converged toward the global solution solved by the lattice homogenization 

code.10 However, the solution will not converge exactly to this reference solution because 

the currents from the nodal code are surface integrated values. Thus, the current across 

a node face has no shape and the accuracy reduces. 
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1.5 Objectives 

The objective of this thesis is to find a feasible method to use global reactor 

information to improve homogenized parameters used in nodal diffusion theory. The 

method should be applicable to multiple dimensions and multiple energy group analyses. 

The lattice homogenization code should be of any analysis type. Since lattice 

homogenization codes usually employ a transport theory method, work in this thesis also 

employs transport theory. Extended geometry and response matrix techniques for 

improving the accuracy of homogenized parameters are undesirable because of their 

increased computer resources. Also, iterative methods that completely rehomogenize each 

node are too expensive for the analysis also. 

An iterative method that updates the homogenized parameters by correlations does 

appear attractive. For extremely simple geometries, correlations can be found by applying 

perturbation theory or variational analysis. However., these techniques are not used in this 

thesis because of the difficulty involved in lattice homogenization. Usually, lattice 

homogenization involves twenty energy groups20 or more and trends in the nuclear 

industry are moving toward explicitly modelling all details of the fuel assembly, including 

explicit modelling of each fuel pin within the assembly.23'24'25 These concerns eliminate 

using perturbation theory or variational analysis to find correlation coefficients. Thus, the 

method used to find correlation coefficients is a numerical approach. This approach is 

much more feasible than other methods due to its simplicity. 
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Two computer codes were written for this thesis. A description of these computer 

codes is provided in Chapter II as well as validation results for the codes. One code is a 

lattice homogenization code that uses discrete ordinates and the other is a nodal diffusion 

theory code. The remaining chapters develop the procedure to improved the homogenized 

parameters. In Chapter HI, the method is developed in a one-dimensional geometry. This 

chapter discusses the dependency of the correlations to the energy groups and faces of the 

node. Also, a boundary condition necessary to obtain accurate correlations is introduced 

in Chapter HI. The correctness of the linear correlation approximation is addressed. In 

Chapter IV, the method is extended to two dimensions and the effect of using different 

flux approximations in the nodal code and different values for the diffusion coefficients 

is examined. Dependencies of the correlation coefficients are also examined. Lastly, a 

review of the method is given in Chapter V along with ideas for future research. 
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CHAPTER II 

ANALYSIS TOOLS 

2.1 Analysis Tools Overview 

Three different analysis tools aire employed in this thesis to examine methods for 

improving homogenized parameters. One tool is a. pin cell homogenization code. This 

code provides multigroup cross sections for each location in a fuel assembly. The second 

tool, a lattice homogenization code, collapses the pin cell cross sections to find 

homogenized parameters for each assembly. It-is essential that the lattice homogenization 

code can perform reactor calculations on multiple assemblies so that reference solutions 

are available. The final tool, a nodal diffusion theory code, uses the homogenized 

parameters in a global reactor calculation in an attempt to reproduce reference results. The 

goal of this chapter is to validate the use of these tools. 

The pin cell homogenization code used to calculate macroscopic cross sections is 

COMBINE/PC.26 COMBINE/PC starts, with'ENDF/B-Vers ion 5 cross sections and 

resonance parameters collapsed to 166 energy, groups. It uses the Nordhiem numerical 

method for resolved resonances and the Wigner rational approximation for unresolved 

resonances. COMBINE/PC also uses the Dancoff-Ginsburg correction factor and the ABH 

method for spatial homogenization. The Bl and B3 approximations to the Boltzmann 

transport equation calculate the neutron spectrum needed to collapse the fine group cross 
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sections into broad energy groups. Its use in this thesis is to provide reasonable and 

consistent values for two-group pin cell, water gap, and control cross sections. This code 

provides the P3 scattering cross sections used in Chapter III and the Px scattering cross 

sections used in Chapter IV. COMBINE/PC has been benchmarked to Monte Carlo 

techniques for cylindrical fuel rod cells, and several moderated and unmoderated critical 

assemblies.27 

JTC is the lattice homogenization code written for use in this thesis. JTC has 

several options that are uncommon to many transport theory codes. For instance, the code 

has a unique boundary condition specification. Rather than reflective, periodic, or albedo 

boundary conditions, the user enters values for the odd moments of the angular flux along 

each boundary for each energy group. This option allows greater flexibility in the 

boundary condition specifications. The code can also spatially homogenize distinct regions 

within the geometry. With this option, reference homogenized parameters for each fuel 

assembly in a global reactor problem are readily available. Another feature of JTC is that 

flux discontinuity factors and edge-to-average flux ratios are direct output values. 

Section 2.2 describes the lattice homogenization code in greater detail. 

Lastly, a nodal diffusion theory code, NDT, also written for this thesis, tests the 

homogenized parameters and any method to update them. NDT has the ability to update 

homogenized parameters during operation/Section 2.3 describes the nodal code in greater 

detail. Several different flux approximations are available in NDT. 
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2.2 JTC Description 

The neutronics and lattice homogenization routines of JTC are described in this 

section. As a general overview, the code uses the diamond difference approximation to 

the discrete ordinates transport equation. However, it stores only the moments of the 

angular flux in each coordinate direction. The code contains two levels of iterations. Inner 

iterations update the moments of the angular flux in each coordinate direction and the 

outer iteration is the power method for finding the eigenvalue. The code employs a 

two-step acceleration28 technique. 

From Henry7, the discrete ordinates transport equation including spherical 

harmonics is interpreted as 
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where Y and Y are the spherical harmonics function and its complex conjugate, 

respectively, 

/ and m are indexes to the spherical harmonics, 

d and d' are discrete directions, 

g and g' are energy groups, 

wtd, is the weight associated with direction d', 

keff is the effective multiplication factor, 

i|/ is the discretized angular flux, 

and £ = y\-/? sin 0 with /u. = cos 9 . 

The cross sections, o , are macroscopic cross sections but are written using the lower 

case sigmas to avoid confusion with summation signs. The spherical harmonic function 

is 

y£ = f ( ^ J l M ) i ;>/»(/,) exp(//770) (2.2) 
I (A/77)! ) 

where Pt (JJ,) is the associated Legendre polynomial. A direction, d, has known values 

of /j,, 0 and weights from the angular quadrature set. 

Integrating equation (2.2) over all © reduces the source term in the transport 

equation to a one-dimensional form ( m is art integer number ). This is equivalent to 

setting m equal to zero. In this case, the spherical haimonics function and its complex 

conjugate reduce to 
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causing the source term to become 

7-X, E *°'X + E E (2 A1) O^/MM,) < , (2-4) 

where L is the truncation order of die scattering cross section and <pf is the moment of 

the angular flux defined by 

D 
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In JTC, the indexes d and d' in the above three equations are only in the x direction. 

The source term in equation (2.4) depends on /j. and the x direction moments ( also a 

function of /u, ). Therefore, for m = 0 , the source term has no y direction dependencies. 

The y direction contributions appear for m * 0 in the spherical harmonics function. By 

neglecting the y direction components in the scattering terms, a simple method emerges 

for solving the two-dimensional discrete ordinates equation. 

JTC employs equations (2.3) through (2.5) when solving for the angular fluxes and 

their moments in the x direction. It finds the y direction angular fluxes and moments by 
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rotating the axis. In this case, we replace the direction cosine ju with £ in equations (2.3) 

through (2.5). This provides identical equations necessary for finding the y direction 

angular fluxes and moments. Pivoting the directional sweeps is a common method 

employed in many multidimensional boundary value problems. This approach is named 

the ADI ( alternating direction implicit29'30 ) method. 

The purpose of JTC is a fuel assembly homogenization code. In such calculations, 

there is a large amount of fission throughout the geometry. Thus, anisotropic scattering 

is less important in these type problems than in deep penetration shielding calculations, 

for example. This means that neglecting the m ^ 0 terms in the spherical harmonics 

function is a reasonable assumption. 

The outer iteration process converges to an eigenvalue, keff, using the power 

iteration method. This process is expressed mathematically by 

, Vol G 
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(2.6) 

where the superscript p is the iteration index. At the beginning of an iteration, the 

method computes the total neutron source in the geometiry from fission at iteration p and 

divides by the eigenvalue of that iteration. The upcoming inner iterations use the 

eigenvalue at iteration p. At the end of the inner iteration sweeps, the updated values 

for the scalar fluxes (index p + 1 ) cause the source term to change. Equation (2.6) 
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finds a new value for the effective multiplication factor to use during the next inner 

iteration sweeps. This method guaraintees convergence to the largest eigenvalue.29 As a 

comparative measure, at the end Of all outer iterations, JTC computes the effective 

multiplication factor by dividing all neutron sources by the neutron losses. 

The boundary condition specification in JTC is unique. The Boltzmann transport 

equation is a first order equation in each coordinate direction. If we solve the transport 

equation in two one-dimensional steps, then the transport equation is a first order equation 

in only one direction. Therefore, for each discretized angular flux, the transport equation 

requires one and only one boundary condition. The boundary condition is always a 

specification on the incoming angular flux. For example, a vacuum boundary condition 

states that all incoming angular fluxes are equal to zero. With this condition, the user has 

no control over the values of the outgoing angular fluxes. The geometry and cross 

sections of the problem influence the outgoing angular fluxes. A reflective boundary 

condition states that an incoming angular flux, index d, is equal to its complementary 

outgoing angular flux, index d' , where symmetry requires that the complementary angle 

for fj,d is ~iid. Therefore, for a boundary, there are always — boundary conditions 

where n is the Sa order of the transport equations. In JTC, the user specifies values for 

the odd moments ( - values for each boundary and energy group ) and relationships 

between the incoming and outgoing angular fluxes at complementary angles are found. 

For a symmetric quadrature set, the odd moments of the angular flux are found by 
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0 

*' = £•*„/>,(„ j (*„-*„) (2-7) 

for / equal to the odd integers. This equation results in - equations for the moments 

with — unknowns. When solved, the complementary angles are in the form 

+ , - + * = <? (2-8) 

where C is now a known constant. This boundary condition fixes values for the odd 

moments and yet allows freedom for the even moments. This is an important 

characteristic because the even moments of the problem are not input variables 

( particularly the scalar flux since it defines the flux discontinuity factor ). With these 

boundary conditions, the user can control the shape of the angular flux profile while the 

geometry and cross sections control the magnitude of the angular fluxes. 

The inner iteration solves the one-dimensional discrete ordinates transport equation 

with a constant leakage term. The process begins by computing a source term that 

remains constant throughout the inner iteration. The only part of the source term that 

changes is the within group scattering terms and the within group fission. The constant 

source term is 
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where 

1 
d 

LS'iifyjiY* 
1 (2.10) 

• ? > « - ^ 

The angular fluxes of group g will change at each inner iteration and change the 

moments of the angular flux. This results in changing the within group contribution to the 

source term. The within group source is 

I 
eff ' /"o 

T-X, v o X + £ < 2 / + 1 )<£•*>PM*'t • (2-H) 

The complete source term is a function of the energy group and the angle, /u.d . Thus the 

transport equation becomes 

^d-^9d + agVg,<* = Sg,d • (2AT> 
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JTC uses the diamond difference approximation. This approximation relates the angular 

flux on the left boundary of trie mesh, vjx , to the angular flux on the right boundary of 

the mesh, i|;+, as 

£ + J ^ 
Ax f«. 

( t 

Og _ J^ 
, 2 Ax, 

%,d= St 

(2.13) 
9,d 

The two complementary angles, d and d', are solved simultaneously for all mesh 

intervals in a directional sweep. There are two neutron balance equations written for each 

mesh interval, one for /j.<0 and the other for / />0 . Adjacent meshes are coupled 

together by requiring that the angular flux across an interface is continuous, 

*i/-= * *AI 
(2.14) 

The boundary conditions provide relationships between the incoming and exiting angular 

fluxes at the complementary angles. These equations provide a well-posed problem with 

a unique solution. After JTC solves for the angular, fluxes for all discrete angles, it finds 

new moments of the angular flex and new within group source terms to continue the 

inner iteration. 

JTC writes the boundary condition and neutron balance equations in a manner to 

aid in the solution of the angular fluxes. If written in its entire form, the problem matrix 
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is extremely sparse. The matrix will contain ones along the diagonal, non-zero values 

directly below the diagonal, and a non-zero value in the upper right corner. All other 

values are equal to zero. This matrix is similar to a band diagonal matrix.30 We can easily 

write a reduced matrix that implies the zero values and the diagonal values of one. JTC 

also stores the term in the upper right comer of the problem matrix and implies its 

location. We can easily solve the resulting matrix for the angular fluxes non-iteratively. 

At the end of each outer iteration, JTC checks the flux convergence. JTC stores 

moments of the angular flux in each coordinate direction. This includes the scalar flux 

( zeroth moment ) meaning that there are two scalar fluxes for each mesh and energy 

group. If the problem has converged, then the scalar flux from the x direction iteration 

will equal the scalar flux from the y direction iteration. The maximum flux convergence 

value is the largest deviation between the x and y direction scalar fluxes from all meshes 

and energy groups or the largest change between two successive iterations. After the flux 

convergence is checked, JTC modifies the scalar fluxes so that they are equal in the two 

coordinate directions. 

The homogenization process is a non-iterative operation to find the equivalent 

homogenized parameters. Section 1.2 discussed how to obtain the homogenized 

parameters. Equation (1.3) flux and volume weighs the heterogeneous cross sections and 

diffusion coefficients to find equivalent homogenized cross sections and diffusion 

coefficients. The flux discontinuity faictors are found by employing equation (1.7). The 

surface integrated scalar fluxes from JTC are readily available. This provides a value for 
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the numerator of equation (1.7). The currents along node boundaries are also readily 

available. The current, diffusion coefficient, and nodal code flux approximation provide 

a value for the denominator of equation (1.7) when employed in Fick's law of diffusion. 

A source situation to test the accuracy of JTC is provided in the Argonne 

Benchmark Book.31'32,33 The geometry and material descriptions of the benchmark problem 

are described in Appendix A. The reference solution is an S8 discrete ordinates solution 

from the DOT-in code using a 4x4 mesh spacing. A map of the two group scalar fluxes 

from JTC is also given in Table A.2. Comparison of JTC with the DOT-in solution 

shows that JTC overpredicts the fluxes in the regions that contain the poison pin 

( material 5 ) for both energy groups. This results in an eigenvalue that is lower than the 

reference solution ( i.e., the thermal absorption cross section is much larger than the 

thermal production cross section for material 5 ). The remaining fluxes in the fuel pins 

are in good agreement with both DOT-HI and TWOTRAN-H. Additionally, in the corners 

of the geometry, JTC underpredicts the fast energy group fluxes and overpredicts the 

fluxes in the thermal energy group. Comparison of the TWOTRAN-II solution to the 

DOT-in solution shows identical characteristics in the corners. Examining Table A 3 

shows that JTC does not overpredict the fluxes by more than 1.2% or underpredict them 

by more than 2.3%. We conclude from the benchmark study that JTC is well suited for 

analyzing fuel assemblies. 
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2.3 NDT Description 

NDT is a multigroup, three-dimensional, Cartesian geometry, nodal diffusion 

theory code designed to test methods to improve homogenized parameters. As an 

overview, the code has four flux approximations available, it uses no acceleration 

technique, and it adjusts homogenized parameters based on current-to-flux ratios. 

The neutron diffusion equation is 

D -^—<b - D -----<b - D -—<b + o'd> 
9dx^9 ' a y 2 * ' *dz2 9 9*9 

. G G 

= -j- Xg E V<£ *r + E °'g-+fa 

(2.15) 

where 

G 
/ a 

°a'°aa+ Tie* „ • ( 2 - 1 6 ) 

9 9 Z-/ q-*g' 
g<-\ 

The source term and total cross section in equations (2.15) and (2.16) include the within 

group scattering terms for stability reasons. Neglecting this term causes NDT to become 

unstable and diverge away from a solution. 
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NDT employs the transverse integration procedure. This procedure breaks the 

three-dimensional diffusion equation into three one-dimensional equations with constant 

leakage terms. The leakage term in the x direction is 

X 1 
L ; - - ^ * - ^ ) <2-") 

where the superscripts - and + refer to the left and right sides of the node respectively. 

Currents moving to the right have positive values and currents moving to the left have 

negative values. The y and z directions have similar leakage terms. With the transverse 

integrated procedure, the diffusion equation becomes 

a2 

-Dg-^-J>g + o'g<pg 
Sdx2 9 V 9 

f x , E v o > , • £ o ? ^ , - 1 / - £ / 
"off <7' = 1 <7< = 1 

(2.18) 

for the x direction with similar equations for the y and z directions. 

The four flux approximations are the mesh centered finite difference, volume 

averaged finite difference, quadratic polynomial, and quartic polynomial approximations. 

In the mesh centered finite difference approximation, the flux in the center of the node 

is assumed to equal the average flux of the node. In this case, the second order derivative 

in the x direction is 
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(2.19) 

For the volume averaged finite difference approximation, the average flux in the node is 

a volume weighted quantity found from the values of the two edge fluxes and the center 

flux. The average flux for this assumption is 

0«* = 10- + I*' + 1 A ; 
9 4 9 2 9 4 9 

(2.20) 

where (f>c
Q is the center flux value. It follows that the second order derivative is 

-J- (4 0p-8 0r + 4 ^ 
(Ax)2 (2.21) 

The polynomial used in the quadratic flux approximation is 

*,[-£,) = * r + (*;-*;)£•(*;•**-2* 
/ \2 

AAT y 
(2.22) 

leading to a second order derivative of 
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The polynomial used in the quartic flux approximation is 

<t> 
Ax *r •(*;-*;)£ *(*;+*;-2*r) 

( / v \2 1 N 

\&X, 

0 IAJ "IU^I 0; _x_ 
\A \2 

10 A * 80 J 

(2.24) 

4 5 

where the terms <pg and <pg are die fourth and fifth polynomial coefficients, respectively. 

This polynomial leads to the second order derivative 
1 

(Ax)'< 
60 a - 120 ave 6<l>9 + | * * (2.25) 

The moments weighing technique5 is a method to find the fourth and fifth polynomial 

coefficients. In the technique, the spatially dependent neutron balance equation is 

Y 

multiplied by the first moment, — —, and integrated over the width of the node. Then, the 
Ax 

spatially dependant neutron balance equation is multiplied by the second moment, 
x \2 1 — , and again integrated over the width of the node. The transverse direction 

bx) 4 
leakage terms are expanded into quadratic polynomials for the integration. This technique 
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results in a representation of the flux profile across the node that is superior to the finite 

difference and quadratic polynomial approximations."' 

Adjacent nodes are coupled together by the continuity, of flux condition and the 

continuity of current equation. The continuity of flux equation is that shown by 

equation (1.9) or 

f+ d>+ • = f" d>~ ( 2 - 2 6 ) 

where / and /+ 1 are node indexes. The continuity of current equation is 

J + - J" (2-27> 

Equation (2.27) is expanded using Fick's Law to rid the equations of net currents in favor 

of fluxes and, in the quartic polynomial case, the fourth and fifth polynomial coefficients. 

The continuity of current equation becomes 
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for the mesh centered finite difference, volume averaged finite difference, quadratic 

polynomial, and quartic polynomial approximations, respectively. 

The boundary condition can be either zero scalar flux or zero net current. The 

boundary condition equations, coupling equations, and neutron balance equations form a 

well-posed problem with a unique solution for the scalar fluxes. The power method 

described in the previous section is also used in NDT to iterate to the largest eigenvalue, 

keff. For comparison, at the end of the outer iterations, NDT also computes the 

multiplication factor by dividing the production of neutrons by the absorption and leakage 

of neutrons. When the solution has converged, the multiplication factor from the two 

different methods should be equal. 
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At the end of a series of outer iterations ( flux and eigenvalue iterations ), NDT 

has very good estimates for the currents at the node boundaries and the average fluxes 

within the nodes. This information is used to adjust the homogenized parameters to more 

accurate values based on equation (1.13) with predetermined correlation coefficients. After 

making the adjustments, the flux and eigenvalue iteration process continues using the 

improved homogenized parameters. 

Benchmark results for NDT are provided in Appendix B. The benchmark problem 

is the three-dimensional IAEA LWR. model.31 The reference solution to the benchmark 

problem is a fine mesh VENTURE solution ( finite difference ). Also given is the solution 

from QUANDRY.1 This solution is an analytic solution to the nodal diffusion equations. 

For still another comparison, the IQSBOX solution31 to the benchmark problem is 

provided in Appendix B. This solution is a fifth order polynomial flux approximation. 

Both QUANDRY and IQSBOX use the quadratic transverse leakage approximation. NDT 

results are provided in Table B.2 along with the VENTURE, QUANDRY, and IQSBOX 

solutions. Examining Table B.2 shows excellent agreement in the multiplication factor and 

the fuel assembly peaking factors for the quartic polynomial approximation in NDT. 

However, the finite difference solution and the quadratic solution from NDT both show 

larger errors in the multiplication factor and show an in/out flux tilt. These errors are due 

to a combination of the low order flux approximation and neglecting the transverse 

leakage shape. The quartic polynomial flux approximation in NDT using the quadratic 

transverse leakage shape does show results consistent with the other documented 

49 



solutions. The NDT quartic polynomial solution shows a slight in/out flux tilt but its 

cause is due to the boundary condition in NDT. All three NDT solutions use a zero scalar 

flux boundary condition for the external boundaries where the benchmark problem 

specifies no incoming current. Therefore, the scalar fluxes at the external boundaries are 

lower in NDT than the other solutions. This propagates through the geometry causing the 

power peaking factors in the outer fuel assemblies to be low and causing them to be high 

in the center of the reactor core. 

2.4 Conclusions for trie JTC and NDT Computer Codes 

The neutronics of JTC and NDT have been presented in this chapter. Benchmark 

problems for the two codes demonstrate that both codes are sufficiently accurate for the 

analysis work performed in this thesis. JTC shows errors in strong absorber fuel pins for 

two-dimensional geometries. However, in one-dimensional situations, the streaming term 

and scattering terms in JTC do not contain amy approximations to the discrete ordinates 

equations. The NDT results show that the finite difference and quadratic polynomial flux 

approximations are inaccurate, but the quartic polynomial flux approximation is accurate. 

These results are used in Chapter IV to illustrate the robustness of using correlated 

homogenized parameters. 

An important feature of JTC is the flexible boundary conditions. The benchmark 

problem does not test to ensure that the boundary condition is correct, however, reference 

problems used in Chapter III do. The reference problems in Chapter III are 

50 



one-dimensional heterogeneous regions. At interfaces of adjacent heterogeneous regions, 

the odd moments are recorded and used as boundary conditions. Analysis of the 

geometries in Chapter EQ prove that the flexible boundary conditions do reproduce the 

reference results for one-dimensional cases. 

Reference problems used in Chapter IV show consistency between JTC and NDT. 

The geometries of Chapter IV were used to ensure that homogenized parameters 

computed in JTC will reproduce reference results when used in NDT. This simply 

exhibits that NDT employs the homogenized parameters in a method compatible with how 

JTC computes them. 
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CHAPTER III 

DEVELOPMENT OF A METHOD TO IMPROVE HOMOGENIZED 

PARAMETERS IN A ONE-DIMENSIONAL GEOMETRY 

3,1 Chapter in Objectives 

A method is developed in this chapter to obtain approximate correlations for 

homogenized parameters for one-dimensional geometries. To explore this method, two 

models are chosen which have certain characteristics common to BWfRs and PWRs. The 

basis of the method relies on the general ability to correlate homogenized parameters 

rather than to derive a correlation through theoretical analysis. Therefore, the approach 

taken is to show that a general polynomial correlation will reduce to a simple form 

without a great loss of accuracy. 

In the cases examined in this chapter, the lattice homogenization solution is an Sl6 

discrete ordinates calculation using P3 scattering cross sections and four meshes per 

centimeter. The flux approximation in the nodal code is the quadratic polynomial, 

4 / h (3.1) 

- i < F s l 
2 2 



where h is the node width. Equation (3.1) defines the edge fluxes to be 

v ' (3.2) 

• ' - • (H) -

These relations are necessary to find the quadratic coefficients A and B. The quadratic 

coefficients are shown explicitly in equation (2.22). The homogenization process requires 

knowledge of the nodal code flux approximation only to compute values of the flux 

discontinuity factors. As seen in the denominator of equation (1.7), the flux discontinuity 

factor is dependent on the nodal code flux approximation. 

3.2 Test Geometries and Reference Solutions 

The characteristic chosen to represent BWR:and PWR fuel assemblies is the water 

gap width between the fuel assemblies. The BWR emulation contains a two centimeter 

water gap at the interface between adjacent fuel assemblies ( one centimeter in each of 

the adjacent assemblies ). The PWR emulation does not contain a water gap between 

adjacent assemblies. Both situations also contain heterogeneities ( a neutron absorber and 

a moderator ) designed to give a distinctive flux shape in the interior of the center fuel 

assembly and, therefore, result in unique flux and volume weighted homogenized cross 

sections. 
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The geometries for the two problem situations and the material cross sections used 

in the various regions within the geometry are given on the following pages. In both 

geometries, the two outer regions serve as buffer regions to provide realistic angular 

fluxes ( and therefore moments of the angular flux ) at the interface between assemblies 

and provide a global flux tilt. This supplies non-trivial interface conditions for the 

boundaries of the center assembly. Correlations are developed only for the center 

assembly. 
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Figure 3.1. Reference 1-D BWR Geometry. 
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Table 3.1. Reference Transport Theory Cross Sections for the 
One-Dimensional Studies, cm'1 ( No upscattering ) 

Material Group sa Sf . vS f 

1 1 1.016e-02 2.876e-03 7.346e-03 

(Fuel) 2 1.003e-01 6.171e-02 1.504e-01 

2 1 9.399e-03 2.274e-03 5.872e-03 

(Fuel) 2 7.989e-02 4.346e-02 1.059e-01 

3 1 9.461e-04 0 0 

(Water) 2 3.639e-02 0 0 

4 1 9.699e-03 0 0 

(Absorber) 2 3.398e-01 0 0 

Scattering Energy Group 

Material Order 1 to 1 1 to 2 2 to 2 

1 Po 5.087e-01 1.557e-02 1.150e+00 

(Fuel) Pi 1.706e-01 3.981e-03 3.089e-01 

Pi 5.893e-02 0 0 

P> 1.961e-02 0 0 

2 po 5.099e-0l 1.614e-02 1.173e+00 

(Fuel) Pi 1.712e-01 4.170e-03 3.087e-01 

Pi 5.909e-02 0 0 

P> 1.960e-01 0 0 

3 Po 6,018e-01 3.570e-02 2.005e+00 

(Water) Pi 2.439e-01 7.074e-03 5.550e-01 

Pi 5.407e-02 0 0 

Pi 3.369e-03 0 0 

4 Po 4.325e-01 1.080e-02 8.745e-01 

(Absorber) Pi 1.399e-01 2.103e-03 2.662e-01 

Pi 4.523e-02 0 0 

Pi 9.274e-03 0 0 
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The reference scalar flux profiles shown in Figures 3.3 and 3.4 are necessary to 

compute the reference homogenized parameters. The heterogeneous cross sections and 

diffusion coefficients are flux and volume weighted to obtain homogenized parameters 

and equation (1.7) specifies how to compute the reference flux discontinuity factors. The 

reference homogenized parameters are provided in Table 3.2. Besides reference 

homogenized parameters, the ratios of the edge flux to the average flux for the center 

region is also furnished in Table 3.2. The usefulness of the edge-to-average flux ratios is 

discussed in the Section 3.4. 

From the reference solution, the odd moments of the angular flux at the boundaries 

of the center region are given in Table 3.3. These odd moments can serve as boundary 

conditions to one region problems. For example, in one-dimensional cases only, we can 

use JTC to regenerate the reference homogenized parameters without the two outer buffer 

regions shown in Figure 3.1 or 3.2. This is achieved by using the odd moments shown 

in Table 3.3 as boundary conditions to the center assembly. This exercise serves as a test 

to ensure that the boundary condition for JTC discussed in Chapter II functions correctly. 

The average fluxes in the center regions is also given in Table 3.3. These values are 

necessary for normalization. 
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Figure 3.4. Reference Scalar Flux Profile for the PWR Geometry. 



Table 3.2 Reference Homogenized Parameters for the Sample BWR and 
PWR Geometries. 

Group D (cm) Sa (cm"1) 

1 1.40533 8:69938e-03 

2 0.39892 9.01053e-02 

BWR 

Sf(cm"1) vS^cm"1) 

2,32471e-03 5.93787e-03 

4.54538e-Q2 1.10780e-01 

S s !,2 (cm"1) 

1.85594e-02 

FDF 

Group Left Right 

1 0.93597 0.89776 

2 1.56928 1.58288 

Edge-to-Average Flux Ratio 

Left Right 

1.07491 0.78765 

1.82868 1.48345 

Group D (cm) 2 a (cm'L) 

1 1.35796 9.85700e-03 

2 0.43343 1.03593e-01 

PWR 

SfCcm'1) vS^cm-1) 

2.68851e-03 6.86710e-03 

5.76834e-02 1.40586e-01 

2S !,2 (cm-1) 

1.60355e-02 

FDF 

Group Left Right 

1 1.01920 1.00857 

2 0.99639 0.98442 

Edge-to-Average Flux Ratio 

Left Right 

1.14416 0.89275 

1.09943 1.02672 
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Table 3.3. Reference Odd Moments of the Angular Flux at the Boundaries 
of the Center Region and Reference Average Huxes. 

BWR PWR 

Moment Group Left Right Left Right 

I 1 2.29946e-02 1.27787e-02 1.75466e-02 1.44103e-02 

2 2.()9142e-03' -3.09804e-04 1.68857e-03 -1.27995e-03 

3 1 -1.03634e-Q4 -3.58409e-04 -2.29030e-04 -1.23542e-03 

2 -1.80008e-05 -1.03898e-05 1.56353e-05 2.70164e-04 

5 1 -7.98326e-05 -1.28025e-05 -1.35203e-05 5.03508e-04 

2 3.73161e-06 6.54685e-06 -5.06405e-07 -1.04958e-04 

7 1 4.0147 le-05 4.52050e-05 7.41994e-06 -2.98796e-04 

2 -1.00898e-07 -2.61790e-07 -2.90088e-07 6.47520e-05 

9 1 -2.08952e-05 -3.99888e-05 -1.39822e-06 2.22913e-04 

2 -4.67127e-07 -8.57474e-07 2.37903e-08 -4.95458e-05 

II 1 1.65230e-05 3.4425 le-05 5.21561e-07 -1.95939e-04 

2 3.94900e-07 7.63833e-07 -2.53980e-09 4.36529e-05 

13 1 -2.13205e-05 -3.02109e-05 -2.42737e-06 2.00342e-04 

2 -4.4054 le-08 -1.07379e-07 5.63131e-08 -4.39385e-05 

15 1 2.60125e-05 1.06828e-05 -1.79550e-06 -2.49298e-04 

2 -1.19097e-06 -1.52759e-06 4.91183e-07 5.35428e-05 

Average Flux 

1 7.04241e-01 7.43327e-01 

2 1.46832e-01 1.16972e-01 



3.3 Analysis Procedure 

The analysis procedure is to attempt to reconstruct reference homogenized 

parameters by using initial homogenized parameters and correction components. Zero net 

current ( or reflective ) boundary conditions,, are placed on the boundaries of the center 

region shown in Figures 3.1 and 3.2. This will generate, in JTC, the initial homogenized 

parameters for the center node for' each of the two geometries. These values are provided 

in Table 3.4. 

The correction component for a homogenized parameter is defined as a change 

from the initial homogenized parameter caused by placing odd moments of the angular 

flux on the node boundaries. By defining the correction component in this manner, the 

correction component can include contributions: 

• from polynomial terms in a general correlation, 

• from using higher ordered odd moments for the boundary condition, and 

• from cross product terms involving different energy groups and different node 

faces. 

The correction component is a sum of different combinations of the contributions listed 

above. By defining the correction component this way, we do not have any information 

as to how the various effects interact with each other or how much each effect contributes 

to the correction component. However, it does provide a means to figure out how much 

neglecting a certain effect has on the reconstructed homogenized parameter. 
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The reconstructed homogenized parameter is the initial homogenized parameter 

plus the correction component ( or components ) required to re-establish the reference 

currents on all node surfaces and energy groups. If a certain effect is neglected, then 

summing the initial homogenized parameter to the proper correction components will 

result in a reconstructed homogenized parameter that is not equal to the reference 

homogenized parameter. The difference between the reconstructed homogenized parameter 

and the reference homogenized parameter is related to the error. Thus, the error in a 

homogenized parameter is given by 

Error - Reference ~ Reconstructed ^ 3) 
Reference 

If the error is small, then the effect being tested is weak and the general polynomial 

correlation will reduce to a simpler form. 
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Table 3.4 Initial ( Infinite Lattice ) Homogenized Parameters for the 
Sample BWR and PWR Geometries. 

BWR 

Group D (cm) Sa (an1) Sf (cm"1) vS f (cm"1) 2S 1 - 2 (cm"1) 

1 1.40533 8.69485e-03 2.33061e-03 5.95295e-03 1.85848e-02 

2 0.39892 8.98508e-02 4.57609e-02 1.11529e-01 

FDF Edge-to-Average Flux Ratio 

Group Left Right Left Right 

1 0.86899 0.95108 0.86899 0.95108 

2 1.45919 1.71854 1.45919 1.71854 

PWR 

Group D (cm) Sa (cm"1) Sf (cm'1) vS f (cm"1) 2sl.2(cm"1) 

1 1.35796 9.83579e-03 2.68823e-03 6.86640e-03 1.60953e-02 

2 0.43343 1.03G16e-01 5.75925e-02 1.40365e-01 

FDF 

Group Left Right 

1 0.96489 1.05794 

2 0.90820 1.09680 

Edge-to-Average Flux Ratio 

Left Right 

0.96489 1.05794 

0.90820 1.09680 



Examining the root mean square ( RMS ) error for distinct categories of 

homogenized parameters gives a general indication for the strength or weakness of a 

particular correlation event. There are three distinct categories of homogenized 

parameters; cross sections, flux discontinuity factors, and edge-to-average flux ratios from 

the lattice homogenization solution. The RMS errors for each category of homogenized 

parameters for both test geometries atre presented in the text of this chapter and individual 

errors of the homogenized parameters are listed in tables in Appendix C. The RMS errors 

in the initial homogenized parameters are shown in Table 3.5. RMS errors in the cross 

section category include errors in the absorption, production, and downscatter cross 

sections only. The error in the fission cross section is identical to the error in the 

production cross section, therefore, including both would be redundant. Errors in the 

diffusion coefficients are excluded from the RMS errors. Using the ideas presented in 

Section 1.2 for formally exact homogenization, we can explicitly alter the diffusion 

coefficient to the reference diffusion coefficient and allow the flux discontinuity factors 

to adjust accordingly. As addressed in Section 1.2 for generalized equivalence theory, 

there exist an infinite set of diffusion coefficients and flux discontinuity factors that can 

all produce identical results. However, it is inconect to compare the different sets of 

diffusion coefficients and flux discontinuity factors and form errors if all sets produce the 

same result in a nodal analysis. Accordingly, to generate errors for the flux discontinuity 

factors, the analysis procedure requires the diffusion coefficients to equal the reference 

diffusion coefficients. The diffusion coefficients in Table 3.4 were manually changed to 
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the reference values. Changing the diffusion coefficients cannot affect the initial flux 

discontinuity factors because, with reflective boundary conditions, the nodal flux shape 

is always flat. This causes the initial flux discontinuity factor to equal the initial 

edge-to-average flux ratio. 

Table 3.5. RMS Errors in the Initial ( Infinite Lattice ) Homogenized 
Parameters. 

BWR 

Cross Sections 

Flux Discontinuity Factors 

Edge-to-Average Flux Ratios 

0.3529% 

7.2311% 

19.0849% 

PWR 

Cross Sections 

Flux Discontinuity Factors 

Edge-to-Average Flux Ratios 

0.3226% 

8.0780% 

15.3052% 
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The coupling characteristics ( energy group and node face ), boundary condition 

specification, and polynomial fitting are examined in this chapter. We can avoid 

assumptions in the analysis procedure by finding errors from these effects in the order 

mentioned. By using all the odd moments as boundary conditions for the coupling 

characteristics, there are no approximations in the boundary conditions or any polynomial 

fit associated with the correlation. Thus the correction components have lumped these 

effects into one term. Similarly, by using the reference currents only, we can analyze 

approximations for boundary conditions without any information of an accurate 

polynomial fit for the homogenized parameters. 

Referring to equation (1.13) shows that the current is normalized to the average 

flux. This choice of normalization allows the correlation to perform at all power levels. 

However, there are other choices to consider. For instance, the scalar flux on the 

boundary of the node could normalize the current and other odd moments rather than the 

average flux of the node. However, this choice of normalization is unsuitable because, 

without an exact reference boundary condition (i.e., a current and higher odd moments ), 

the edge flux is likely to have; significant errors that can easily propagate in the 

correlations. A simpler view of this is that the edge fluxes are much more sensitive to a 

boundary condition than the average flux. Another choice is to normalize the current and 

odd moments to a reaction rate. However, normalizing the current in a region such as the 

reflector would create problems with this choice. The reflector has no power output from 

fission and the absorption reaction rate is very small. Therefore, this choice of 
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normalization is not the best choice either. Thus, the choice of normalization shown in 

equation (1.13) is the best decision. 

3.4 Coupling Characteristics 

Energy Group Coupling 

The coupling relationship between the fast and thermal energy groups of the two 

group problems is examined in this segment. We can find the correction components 

associated with the fast energy group by using the reference boundary conditions for the 

fast energy group on both surfaces and reflective boundary conditions for the thermal 

energy group on both surfaces. A similar procedure finds the correction components 

associated with thermal energy group currents. The correction components include 

coupling between the two node faces so that any node face coupling errors are not 

present. 

Errors in the reconstructed homogenized parameters for both geometries are 

displayed in Table C.l. Trends in Table C.l are also seen in Table 3.6 below. Examining 

Table 3.6 shows that the RMS errors of the reconstructed homogenized parameters are 

less than errors in the initial homogenized parameters seen in Table 3.5 for all three 

categories of homogenized parameters. In comparing Tables 3.5 and 3.6, the errors in the 

homogenized cross sections and in the edge-to-average flux ratios dramatically decreased 

by a factor of 50 and higher. However, the flux discontinuity factors moderately improved 
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by a factor of 10 or less. This small improvement in the flux discontinuity factor suggests 

that the fast and thermal energy groups do contain significant cross product terms. 

Table 3.6. RMS Errors in the Energy Group Reconstructed Homogenized 
Parameters. 

BWR 

Cross Sections 

Flux Discontinuity Factors 

Edge-to-Average Flux Ratios 

PWR 

Cross Sections 0.0065% 

Flux Discontinuity Factors 0.8497% 

Edge-to-Average Flux Ratios 0.2081% 

Expanding equation (1.7) illustrates a major cause of the energy group coupling 

for the flux discontinuity factors. Since equivalence theory states that the average flux in 

the nodal code must equal the average flux of the reference solution, we can divide the 

numerator and denominator of equation (1.7) by the average flux for energy group g as 

seen in equation (3.4). The numerator of equation (3.4) is the edge-to-average flux ratio 

from the lattice homogenization code. This value depends on the current-to-flux ratios 

from all energy groups and node faces. The denominator of equation (3.4) is derived 

directly by applying Fick's law to each surface of the node. Thus, the denominator of 

0.0053% 

1.4065% 

0.2163% 
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equation (3.4) is also a function of the current-to-flux ratios. Dividing the numerator by 

the denominator produces cross product terms between the different current-to-flux ratios. 

f * 
<7 

Xk 

* £ . 
ave 0 V ^9 ) (3.4) 

0, 

* 9 ) nodal 

Fick' s law provides the relationship between the current on a node boundary and 

the flux values for a given nodal flux approximation. For the quadratic polynomial of 

equation (3.1), the denominator of equation (3.4) for the left or right boundary of the node 

is 

0 9 -
ave 0 

0 + 

^9 
ave 

= 1 

= 1 
0 

6D 

6D 

3 ; 

0 ave 
9 0 ave 

9 ) (3.5) 

J_P_ + 2 A 
I * ave <t> ave 

9 ) 

where h is the width of the node, - represents the left boundary, and + represents the 

right boundary. 

Correlating edge-to-average flux ratios from the lattice homogenization procedure 

and using them to find the flux discontinuity factors allows us to easily account for the 

dominating cross product terms in the flux discontinuity factors. The procedure to 
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improve the flux discontinuity factors is demonstrated in Table 3.7 and the resulting errors 

that remain in the flux discontinuity factors are given. The first column of Table 3.7 is 

the edge-to-average flux ratios for a nodal code using the quadratic flux polynomial 

( equation (3.5) ) for the two reference geometries. Values for the currents and average 

fluxes are provided by Table 3.3 and the diffusion coefficients are from Table 3.2. These 

values and the reconstructed edge-to-average flux ratio from the lattice homogenization 

are employed in equation (3.4) to produce the second column; the alternative method for 

reconstructing flux discontinuity factors. Errors in the flux discontinuity factors from this 

alternative approach are shown in the third column. The error column clearly shows that 

flux discontinuity factors found by employing equation (3.4) are much lower than those 

found by reconstructing the flux discontinuity factors directly. Using this procedure has 

reduced the RMS error of the flux discontinuity factors to 0.2163% and 0.2081% for the 

BWR and PWR geometries, respectively. Since the denominator is a known function 

derived from Fick' s law, the error in the flux discontinuity factor is equal to the error in 

the reconstructed edge-to-average flux ratio. 

72 



Table 3.7. Flux Discontinuity Factors and Errors Computed by the 
Alternative Method fdr the Energy Group Coupling. 

Face Edge-to-Average 
(Group) Flux Ratio ( Nodal) 

FDF % Error 

BWR 

Left (1) 1.14845 0.93674 -0.0828% 
Right (1) 0.87736 0.89686 0.0997% 

Left (2) 1.16530 1.57380 -0.2884% 

Right (2) 0.93718 1.57820 0.2957% 

PWR 

Left (1) 1.12261 1.02024 -0.1018% 

Right (1) 0.88516 1.00741 0.1147% 

Left (2) 1.10341 0.99918 -0.2800% 

Right (2) 1.04297 0.98179 0.2669% 

Other than improving the accuracy of the flux discontinuity factors, correlating the 

edge-to-average flux ratios from the lattice homogenization code shows other benefits 

over directly correlating the flux discontinuity factors. The flux discontinuity factors are 

dependent on the flux approximation used in the nodal code. However, the 

edge-to-average flux ratio correlations from the lattice homogenization are not dependent 

on the nodal code flux approximation. This means mat amy nodal code flux approximation 

can use the correlation. The nodal code can readily figure out the denominator of 

equation (3.4) for any nodal code flux approximation and in turn, compute the appropriate 

flux discontinuity factor. Therefore, correlating the edge-to-average flux ratios allows for 

correction of the nodal code flux approximation. 
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Another advantage of this approach is that the flux discontinuity factor can correct 

for any uncertainty in the diffusion coefficient. The edge-to-average flux ratio correlation 

found from the lattice homogenization is also independent of the diffusion coefficient. 

However, the edge-to-average flux ratio from the nodal code is dependent on the diffusion 

coefficient. Again by equation (3.5), changing the diffusion coefficient will change the 

value of the flux discontinuity factor. 

Node Face Coupling 

This segment is similar to the preceding segment except the coupling is between 

the two opposite faces of the node rather than the energy groups. To avoid energy group 

coupling errors, the energy groups remain coupled together in this segment. Correction 

components are found for the left and right node faces by using appropriate combinations 

of reference and reflective boundary conditions. Errors in the reconstructed homogenized 

parameters are displayed in Table C.2 and the RMS errors of the three different categories 

of homogenized parameters for both geometries are displayed in Table 3.8. 

Comparing Table 3.8 to Table 3.5 shows that errors in the homogenized cross 

sections and edge-to-average flux ratios significantly reduce for both geometries while the 

flux discontinuity factors again only moderately reduce. As in the energy group coupling, 

this suggests that the node face dependency in the cross sections and edge-to-average flux 

ratios is weak. However, there are significant cross product terms in reconstructing the 

flux discontinuity factors directly. 
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Table 3.8. RMS Errors in trie Node Face Reconstructed Homogenized 
Parameters. 

BWR 

0.0053% 

0.5743% 

0.0684% 

PWR 

0.0023% 

0.9703% 

0.0941% 

Correlating the edge-to-average flux ratios over the flux discontinuity factors is 

also supported by the trends seen in Table 3.8. As before, using correlated 

edge-to-average flux ratios in equation (3.4) results in an easy method to include cross 

product terms in the flux discontinuity factors., As seen in Table 3.9, the RMS errors in 

the flux discontinuity factors will easily reduce to 0.0684% and 0.0941% by this approach 

for the BWR and PWR geometries,, respectively. As before, this approach to find the flux 

discontinuity factor includes effects of the nodal code flux approximation and diffusion 

coefficient. 

Cross Sections 

Flux Discontinuity Factors 

Edge-to-Average Flux Ratios 

Cross Sections 

Flux Discontinuity Factors 

Edge-to-Average Flux Ratios 



Table 3.9. Flux Discontinuity Factors and Errors Computed by the 
Alternative Method for the Node Face Coupling. 

Face Edge-to-Average 
(Group) Flux Ratio (Nodal) 

FDF % Error 

BWR 

Left (1) 1.14845 0.93517 0.0858% 
Right (1) 0.87736 0.89822 -0.0516% 

Left (2) 1.16530 1.56783 0.0924% 

Right (2) 0.93718 1.58309 -0.0134% 

PWR 

Left (1) 1.12261 1.01785 0.1331% 

Right (1) 0.88516 1.00967 -0.1091% 

Left (2) 1.10341 0.99573 0.0655% 

Right (2) 1.04297 0.98480 -0.0386% 

In conclusion, correlations cannot accurately model the effects that current-to-flux 

ratios have on the flux discontiouity factors direclily. However, an accurate approach to 

find the flux discontinuity factors is to correlate the edge-to-average flux ratio from the 

lattice homogenization calculation. This approach is very successful because it is not only 

accurate, but it accounts for the flux approximation in the nodal code and the diffusion 

coefficient used for the node. The edge-to-average flux ratio from the nodal code is 

readily available for use in equation (3.4). 
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3.5 Boundary Condition Approximations 

In the preceding section, all odd moments of the angular flux from the reference 

calculations provided the boundary conditions for the center region of the two sample 

geometries. However, if the reference solution is not known, neither are the higher 

ordered odd moments of the angular flux, particularly the third moment. The third 

moment plays a more important role in the angular flux shape than the remaining higher 

odd moments. The boundary condition that best duplicates the third moment of the 

angular flux ( and higher odd moments ) and consequently the scalar flux for the sample 

BWR and PWR geometries is explored in this section. 

Common boundary conditions in transport theory codes are reflective, periodic, 

vacuum, albedo, and white boundary conditions.34,35'36 Only one of the above boundary 

conditions can create a current on one surface of a node. Reflective boundary conditions 

specify that the angular flux that exits a boundary returns into the boundary at its 

complementary angle. This means that the angular flux is symmetric and, because of the 

symmetry, this condition cannot create any odd moments of the angular flux. Periodic 

boundary conditions cannot create a current on only one face of the node. As such, we 

cannot decouple the node face dependencies of the current and other odd moments to 

form a correlation. We can view a vacuum boundary condition as an albedo condition that 

is equal to zero and, therefore, it will not be used. Furthermore, a vacuum boundary 

condition is unrealistic for fuel lattices. A white boundary condition finds an incoming 

angular flux ( constant for all incoming fj, ) that does not result in a current. Therefore, 
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it is also of no use for this analysis. Only the albedo boundary condition can create a 

current on only one face of the node. 

The boundary conditions can be written in a functional form, i|f(yu), and 

integrated to find values for the moments of the angular flux. The integral that defines 

the moments of the angular flux is 

1 

4>„ = {[*{».) P„M*n (3'6) 

-1 

where <pn is the 77th moment of the angular flux and Pn is the nth Legendre 

polynomial.37 The shapes of the angular flux can be described using common geometry 

functions in x-y coordinates and then transformed to polar coordinates to arrive at an 

expression for i|j (>u). The relations in equation (3.7) are used to convert from x-y to 

polar coordinates. 

x = i|f (//) cos 9 = i|f (\x) p. 
(3.7) 

y = ij; (p) sin 9 = ij; (y.) /l~ - if 

In this section, characteristics of the albedo boundary condition are examined 

followed by a comparison of the albedo condition to the reference angular flux shapes on 

the node boundaries. The albedo is shown to be insufficient for creating a current and 

accurately modelling the node edge scalar flux Lastly, a boundary condition is proposed 
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in this section that creates a current and provides good approximations to the node edge 

scalar flux. Accurately predicting the scalar flux on a node boundary for a given current 

is a crucial task because the node edge scalar flux defines the flux discontinuity factor. 

Albedo Boundary Condition 

The albedo boundary condition specifies that a known portion of the current that 

exits a boundary reflects back into the medium. Mathematically, this is 

€ = JLM. . (3.8) 
$(-v) 

Three possible shapes for the albedo condition are shown in Figure 3.5. The dotted lines 

represent a constant value and the solid lines represent albedo shapes that are elliptic. 
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Upward Stretched Elliptic Albedo 

Circular Albedo 

Flattened EI iptic Albedo 

Figure 3.5. Polar Plot of Possible Angular Flux Shapes 
for an Albedo Boundary Condition. 
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We can define each shape in Figure 3.5 by the ellipse 

( x\ 

\ a ) 

y] 
b) 

(3.9) 

and use the transformations in equation (3.7) to write the angular flux shape as 

+ U) 
{# { a' b2, 

> \ 

/ (3.10) 

The constants a and b are different for pi > 0 and fx < 0 , but the albedo condition 

( equation (3.8) ) forms a relation between the values. Also, for an upward stretched 

elliptic albedo, a< b\ a circular albedo, a = b\ and a flattened elliptic albedo, a> b. 

All three shapes show a current arbitrarily moving to the right. Integrating the 

angular flux shape given in equation (3.10) in equation (3.6) shows that the second 

moment is negative for an upward stretched ellipse, zero for the circular ellipse, and 

positive for the flattened ellipse. However, the important feature of the shapes is the value 

of the third moment relative to the first moment. Regardless of the value of the albedo, 

the ratio of the third moment to the first moment is constant for any given a and b 

constants. The ratio of the third moment to the first moment ranges from -0.1 for a 
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flattened ellipse to -0.4 for an upward stretched ellipse. The ratio is -0.25 for the circular 

albedo shape. These values cover a wide range of normalized current values. 

Reference Angular Flux Shapes on die Node Boundaries 

The solutions in this chapter used an 516 angular quadrature set which provides 

several angular fluxes to form a polar plot. Then, it is easy to examine the polar plot and 

learn characteristics of the angular flux shape in the sample BWR and PWR geometries. 

This information will reveal if we expect an albedo to reliably serve as a boundary 

condition. 

Figures 3.6 and 3.7 show polar plots of the reference angular fluxes for the BWR 

and PWR geometries, respectively. The dotted line in each drawing is a constant value 

equal to the scalar flux for the node face and energy group. The angular fluxes are shown 

for both energy groups and on both node faces. In each drawing, the first angular flux 

points to the far right and the sixteenth angular flux points to the far left. The eighth and 

ninth angular fluxes point upwards. 
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Group 1, Left Face 

Group 2, Left Face 

Group 1, Right Face 

Group 2, Right Face 

Figure 3.6. Polar Plots of the Reference Angular Fluxes 
on the Node Surfaces of the BWR Geometry. 



Group 1, Left Face Group 1, Right Face 

00 
4^ 

Group 2, Left Face Group 2, Right Face 

Figure 3.7. Polar Plots of the Reference Angular Fluxes 
on the Node Surfaces of the PWR Geometry. 



In the albedo condition shown by equation (3.8), the ratio of the first to sixteenth 

angular flux will equal the ratio of the eighth to ninth angular flux. In the BWR 

geometry, the only angular flux shape in Figure 3.6 that shows this characteristic is the 

thermal energy group on the right surface. However, this shape is nearly symmetric 

meaning that all odd moments are approximately equal to zero as seen in Table 3.3. In 

the other three angular flux shapes of the BWR geometry, the ratio of the eighth and 

ninth angular fluxes is approximately equal to one while the ratio of the first and 

sixteenth angular fluxes are not. This is not a characteristic of the albedo boundary 

condition and, therefore, the albedo boundary condition is not expected to create a current 

and adequately predict the scalar flux and other odd moments of the angular flux. 

Examining the angular flux shape on the surfaces Of the PWR geometry shows that 

the left face does not exhibit characteristics of an albedo boundary condition, however, 

the right face does. The angular flux shape on the right face of the fast energy group 

shows some resemblance to the upward stretched ellipse seen in Figure 3.5. The angular 

flux shape for the thermal energy group on the right face is similar to the circular albedo 

shape. Therefore, the albedo boundary condition might be sufficient to model the right 

face of the PWR, but it will not provide a good boundary condition for the left boundary. 

Nevertheless, the individual errors of the homogenized parameters found by using 

albedo boundary conditions to reproduce the reference currents are listed in Table C.3. 

The flux discontinuity factors are: excluded from Table C.3 because the edge-to-average 

flux ratios are used to arrive at the them. To avoid energy group and node face coupling 



errors, this analysis created the currents in both energy groups and on both surfaces 

simultaneously. Examining the RMS errors in Table 3.10 shows that the errors in the 

cross sections are small, but the enors in the edge-to-average flux ratios are larger than 

those from the energy group or node face decoupling. Since cross sections are volume 

weighted quantities, they are expected to be less sensitive to the boundary condition than 

the edge-to-average flux ratio. However, the edge-to-average flux ratio is extremely 

sensitive to the boundary condition. 

Table 3.10. RMS Errors using Albedo Boundary Conditions to Reconstruct 
the Homogenized Parameters. 

BWR 

Cross Sections 0.0320% 

Edge-to-Average Flux Ratios 1.5806% 

PWR 

Cross Sections 0.0031% 

Edge-to-Average Flux Ratios 1.3306% 

86 



Scalar flux profiles neat the boundaries of the center node for the two energy 

groups are shown in Figures 3.8 and 3.9 for the two geometries. The node boundary and 

the 2.5 cm toward the interior of the node aire displayed in the figures. The dotted line 

is the reference Sl6 scalar flux profile and the solid line is the Sl6 scalar flux profile using 

the albedo boundary condition to create the reference currents. In each figure, the albedo 

boundary condition accurately predicts the scalar flux profile toward the interior of the 

node. However, at the node boundairy, the albedo boundary condition has created small 

tails that are clearly visible in the fast energy group. These tails lead to inaccurate 

correlations for the edge-to-average flux ratios from the lattice homogenization code and, 

it follows, lead to inaccurate flux discontinuity factors. 
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Figure 3.8. Scalar Flux Profiles near the Boundaries of the BWR Geometry 
created by the Albedo Boundary Condition. 
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Figure 3.9. Scalar Flux Profiles near the Boundaries of the PWR Geometry 
created by the Albedo Boundary Condition. 



Shifted Circle Boundary Condition 

In the previous segments, it was shown that the albedo boundary condition does 

not sufficiently model the scalar flux profile near node boundaries. Examining the values 

of the reference odd moments given in Table 3.3 shows that the higher odd moments are 

small compared with the current. Also, many of the angular flux profiles in Figures 3.6 

and 3.7 imply that the angular flux is continuous near v|/(yU = 0) unlike an albedo 

condition. A boundary condition that can create a current and yet cause the higher odd 

moments to equal zero may provide a good boundary condition to correlate the 

homogenized parameters. 

An angular flux profile that can create a current without creating higher odd 

moments is a shifted circle shape. In this profile, the angular flux is circular around a 

point to the left or right of the origin. A sample polar plot of this condition is displayed 

in Figure 3.10. An equation for the angular flux shape is obtained by writing in x-y 

coordinates the equation for a circle with radius a and shift b, 

(x-b)2 * yz - a2 . ( 3 1 1 ) 
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Figure 3.10. Polar Plot of a Shifted Circle Angular Flux Profile. 
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Equation (3.11) is transformed to polar coordinates by using equation (3.7). These 

equations result in a form for the angular flux as a function of fj,, 

• (AO.
 b 

JLMZL - __ ^ + a a \ a 
\-#)£ • (3'12) 

2 

In examining this equation, the first term is a constant times the first Legendre 

polynomial and the second term is an even function. When evaluating equation (3.6) for 

the odd moments, the first term only contributes to the current ( 0 1 ) because of the 

orthogonal relationship of the Legendre polynomials. Because the second term is an even 

function, it never contributes to the odd moments. Therefore, equation (3.12) creates a 

current but all other odd moments are exactly equal to zero. 

For the two sample geometries, this boundary condition creates the reference 

currents on both node surfaces and both energy groups simultaneously in an attempt to 

reproduce the reference homogenized parameters. The boundary condition was used on 

all surfaces simultaneously to avoid the coupling errors discussed in Section 3.4. The 

errors for each homogenized cross section and the edge-to-average flux ratios are listed 

in Table C.4 and summarized in Table 3.11. 
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Table 3.11. RMS Errors using the Shifted Circle Boundary Conditions to 
Reconstruct the Homogenized Parameters. 

Cross Sections 

Edge-to-Average Flux Ratios 

BWR 

0.0022% 

0.0615% 

Cross Sections 

Edge-to-Average Flux Ratios 

PWR 

0.0010% 

0.3351% 

Comparing Tables 3.10 and 3.11 show that the shifted circle boundary condition 

is far superior to the albedo boundary condition for creating the global flux tilt through 

the sample nodes. However, Table 3.11 does create some concerns. The RMS errors in 

the edge-to-average flux ratios for the PWR geometry are much higher than those for the 

BWR geometry. Examining Table C.4 shows that the larger errors of the PWR geometry 

occur on the right surface. This surface is a material boundary as well as a node 

boundary. In the reference angular flux profiles for this boundary shown in Figure 3.7, 

the angular flux does slightly resemble an albedo shape. Nevertheless, for the geometry 

at hand, the shifted circle boundary condition is better than the albedo boundary condition 

even on the material boundary. For some interfaces that are vastly different such as the 

fuel and baffle/reflector interface, the albedo boundary condition may be necessary. 
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However, it is common to analyze the baffle/reflector regions using one-dimensional 

extended geometry calculations.11 

Figures 3.11 and 3.12 are similar to Figures 3.8 and 3.9. In these figures, the 

scalar flux profiles near the node boundaries are shown for the BWR and PWR 

geometries when the reference currents were created using the shifted circle boundary 

condition. The dotted line in both figures is the reference scalar flux shape and the solid 

lines are the scalar flux shapes created by using the-shifted circle boundary condition. 

Unlike the albedo boundary condition, employing the shifted circle boundary condition 

has not created the tails on the node surfaces. Concluding, for fuel/fuel interfaces, the 

shifted circle boundary condition more accurately predicts the scalar flux on the edge of 

the node than the albedo boundary condition. 
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Figure 3.11. Scalar Flux Profiles near the Boundaries of the BWR Geometry 
created by the Shifted Circle Boundary Condition. 
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Figure 3.12. Scalar Flux Profiles near the Boundaries of the PWR Geometry 
created by the Shifted Circle Boundary Condition. 



3.6 Polynomial Fitting 

In this section, we examine if the correlations for the homogenized cross sections 

and the edge-to-average flux ratios are linear as shown in equation (1.13). It was shown 

in Section 3.4 that terms multiplying the current-to-flux ratio from different energy groups 

or from different node surfaces together are small. However, terms that raised the 

current-to-flux ratio to a power were not discussed in that section. 

For each surface arid each energy group of the two sample geometries, the shifted 

circle boundary condition is used to create different currents ( and therefore 

current-to-flux ratios ) on the surface of the node:-This is necessary to fit the correlation 

coefficients to a power series. The currents created on the surface result in current-to-flux 

ratios of -0.10, -0.05, 0.0, 0.05, and 0.10. The five different current-to-flux ratios will 

truncate the power series to a fourth order polynomial. 

1 + y a 1 1 ) " (3.13) 

The energy group and node face subscripts have been omitted for convenience. 

Multiplying the power series and the infinite lattice homogenized parameter together 

result in the reconstructed homogenized parameter. 
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Typically, the current-to-flux ratios are within a range from -0.10 to 0.10. If the 

current-to-flux ratio were as high as ±0.10, then the coefficient for the second order 

power term would need to be ten times as large as the linear coefficient term to produce 

equivalent change in the homogenized parameter.. Similarly, to produce the same change, 

the third order power coefficient needs to be one hundred times larger than the linear 

coefficient, and the fourth order power coefficient needs to be one thousand times larger 

than the linear coefficient. For smaller current-to-flux ratios, the higher ordered 

polynomial terms become less important. Therefore, a linear correlation should be 

sufficient to approximate the correlations provided the second, third, and fourth ordered 

polynomial coefficients are less than 10, 100, and 1000 times the linear coefficient, 

respectively. In Tables C.5 through C.12, the correlation coefficients are provided for the 

two sample geometries corresponding to currents on both node surfaces and energy 

groups. Examining these tables will show that the second, third, and fourth polynomial 

coefficients should not result in significant changes to the homogenized parameters for 

current-to-flux ratios as high as +10%. 

Errors in the reconstructed homogenized parameters found by using all polynomial 

coefficients with the reference current-to-flux ratios are listed in Table C.13. Likewise, 

errors in the reconstructed homogenized parameters using only the first two polynomial 

coefficients with the reference current-to-flux ratios are listed in Table C.14 and errors 

using only the linear coefficient are listed in Table C.15. These errors are summarized in 

Tables 3.12 through 3.14. 
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Table 3.12. RMS Errors using a Fourth Ordered Polynomial to Reconstruct 
the Homogenized Parameters. 

BWR 

Cross Sections 0.0041% 

Edge-to-Average Flux Ratios 0.1051% 

PWR 

Cross Sections 0.0036% 

Edge-to-Average Flux Ratios 0.3817% 

Table 3.13. RMS Errors using a Quadratic Polynomial to Reconstruct the 
Homogenized Parameters. 

BWR 

Cross Sections 0.0037% 

Edge-to-Average Flux Ratios 0.0954% 

PWR 

Cross Sections 0.0033% 

Edge-to-Average Flux Ratios 0.3811% 
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Table 3.14. RMS Errors using a Linear Fit to Reconstruct the 
Homogenized Parameters. 

BWR 

Cross Sections 0.0085% 

Edge-to-Average Flux Ratios 0.3219% 

PWR 

Cross Sections 0.0048% 

Edge-to-Average Flux Ratios 0.3709% 

In addition to the polynomial fit, the errors in Tables C.13 through C.15 and 

Tables 3.12 through 3.14 include errors caused by energy group decoupling, node face 

decoupling, and the shifted circle boundary condition. Many of the RMS errors in 

Tables 3.12 through 3.14 are less than the energy group decoupling errors and the node 

face decoupling errors. Thus, the combination of these errors can cancel each other out. 

In this event, the fourth order polynomial fit cannot claim superior accuracy to the 

quadratic polynomial or even the linear fit. Tables 3.12 through 3.14 simply support that 

the errors in a linear fit for the homogenized parameters are insignificant compared to the 

remaining errors in the energy group coupling and the node face coupling. 

The linear correlation coefficient can be approximated by performing only one 

additional lattice homogenization for each energy group and each node face. The 

additional calculation imposes a current on one face of the node and in one energy group. 

This is repeated for each face and energy group combination. 
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3.7 Conclusions for Finding Correlations to Homogenized Parameters 

A method to approximate a correlation for improving homogenized parameters 

using one-dimensional geometries is revealed in this chapter. At the beginning of the 

chapter, it was assumed that we can find a correlation that couples all energy groups and 

node faces together. However, to find this correlation for a polynomial of the second 

order would require many lattice homogenization calculations even for a one-dimensional 

problem. Performing many lattice homogenization calculations is obviously undesirable. 

It was shown in Section 3.4 that we can decouple the energy groups and node faces to 

reduce the number of calculations without a great loss of accuracy: A linear correlation 

can reduce the number of additional lattice homogenization calculations to one for each 

energy group and node face combination. In a common two-dimensional two-group 

problem, this would require eight additional calculations assuming no geometric symmetry 

of the assembly. 

A key to calculating accurate flux discontinuity factors is to correlate the 

edge-to-average flux ratio and then use equation (3.4) with the nodal code flux 

approximation and diffusion coefficient to figure out the flux discontinuity factors. This 

method greatly improves the accuracy of the flux discontinuity factor over directly 

correlating the flux discontinuity factor. This approach has several advantages over a 

direct correlation of the flux discontinuity factor. The method corrects for uncertainties 

in the diffusion coefficient. For any given diffusion coefficient ( non-zero value ), the 
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denominator of equation (3.4) allows us to account for the diffusion coefficient and find 

a proper flux discontinuity factor. Thus, we do not need to correlate the diffusion 

coefficient or even calculate the diffusion coefficient. Additionally, the correlated 

edge-to-average flux ratios are independent of the nodal code flux approximation unlike 

the flux discontinuity factors. This means that we can change the flux approximation in 

the nodal code without requiring additional calculations for the flux discontinuity factor 

correlation coefficients. 

If the method to find correlation coefficients for the homogenized parameters is 

a transport theory procedure, then there will exist a boundary condition dilemma. The 

nodal code can produce values for the scalair flux and current at the node boundaries, but 

it cannot provide values for the other higher moments of the angular flux. It was 

demonstrated in Section 3.5 that the albedo boundary condition does not accurately model 

the remaining higher moments of the angular flux for the two sample geometries 

examined in this chapter. An angular flux shape that resembles a shifted circle does model 

the angular flux shape of the two sample geometries rather well. The higher odd moments 

of the shifted circle boundary condition are equal to zero. Conversely, the albedo 

boundary condition has higher ordered odd moments of the angular flux that are relatively 

large. Accuracy of the albedo boundary condition improves if the node boundary is also 

a material boundary. However, even for this condition, the shifted circle boundary 

condition still outperformed the albedo boundary condition. 
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Section 3.6 showed that a linear correlation sufficiently models the homogenized 

cross sections and edge-to-average flux ratios as a function of the current-to-flux ratio. 

If the correlation is linear, then we need only one additional lattice homogenization 

calculation to find the correlation coefficient associated with a particular node face and 

energy group. Therefore, equation (1.13) is valid for correlating the cross sections and 

edge-to-average flux ratios provided that the shifted circle boundary condition creates the 

currents on a node boundary to form the correlations. 
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CHAPTER IV 

APPLICATIONS OF CORRELATED HOMOGENIZED PARAMETERS 

IN A TWO-DIMENSIONAL GEOMETRY 

4.1 Chapter IV Objectives 

It was confirmed in Chapter III that for sample one-dimensional BWR and PWR 

geometries, a linear correlation can accurately model changes in homogenized cross 

sections and edge-to-average flux ratios from a lattice homogenization analysis when a 

flux tilt is present across a node. However, for a procedure to be applicable, there are 

several more issues that need to be addressed that were not discussed Chapter III. Among 

these issues are: 

• how are the correlations employed in a reactor analysis, 

• do the adjusted homogenized parameters actually lead to improved global 

reactor results and, if so, how much of an improvement is gained, 

• do the correlations lead to identical answers using different flux 

approximations and diffusion coefficients as suggested by equation (3.4), 

• how do these correlations interact; with changes in the heterogeneous cross 

sections, and 

• which homogenized parameters show strong and weak dependencies on the 

current-to-flux ratios. 
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Responses to these queries will emphasize the necessity of applying global reactor 

information to the homogenized parameters. 

4.2 Iteration Method for Homogenized Parameters 

The method to update homogenized parameters based on current-to-flux ratios is 

similar to adjusting homogenized parameters based on thermal feedback effects. 

Essentially, the current-to-flux ratios are feedback effects, only they are not thermal 

effects as are temperatures and densities. Homogenized parameters are adjusted when the 

global reactor solution obtains good estimates for the independent parameters. In this case, 

the independent parameters are the curreht-to-flux ratios. In this chapter, adjustments to 

the homogenized parameters occur within the nodal code after the flux and eigenvalue 

reach their convergence criteria, 1 .Oe-06. 

The procedure used to solve the global reactor solution begins by using infinite 

lattice homogenized parameters in the global reactor problem to converge on the fluxes 

and eigenvalue. This converged solution should be sufficiently accurate ( relative to a 

reference solution ) to provide current-to-flux ratios used to adjust the homogenized 

parameters. Then, the flux and eigenvalue iterations resume using the adjusted 

homogenized parameters to arrive at yet another global reactor solution. The second 

solution should be more accurate than its predecessor because the homogenized 

parameters now consider the global reactor effects. Since the current-to-flux ratios of the 

second solution will be different from the first, the correlations are used to adjust the 
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homogenized parameters again and a third global reactor solution is found. Each 

improvement in the homogenized parameters should result in a more accurate global 

reactor solution. Thus, adjusting the homogenized paiameters is an iterative technique that 

is contained within the nodal code. When the homogenized parameters between two 

successive iterations are equal to within a convergence criteria, then the global reactor 

solution has completely converged on the eigenvalue, fluxes, and homogenized parameters 

used to find the eigenvalue and fluxes. The iterative method is shown in Figure 4.1. 

106 



(EnteT) 

Initial Flux 
and Eigenvalue 

Iterations 

Evaluate Cunrent/Flux Ratios 
and Adjust Homogenized Parameters 

:lux and Eigenvalue 
Iterations 

/ \ 
/Converged \ 

/with Previous Flux\ n o 

xand Eigenvalue/ 
Iteration ? / 

\ / 
yes 

cmD 
Figure 4.1. Iteration Procedure to Adjust Homogenized Parameters. 
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4.3 Global Reactor Descriptions 

In this section, the two-dimensional sample geometries that resemble BWR and 

PWR fuel patterns are described. Each global reactor problem is composed of nine fuel 

assemblies arranged in a 3x3 pattern. Problems Larger than this would create difficulties 

in rinding a reference solution using JTC. The geometries in this chapter model many 

heterogeneities in the BWR and PWrR fuel assemblies. 

Geometry Descriptions 

The geometry dimensions and location of materials for all fuel assemblies in the 

BWR problem are identical, only the cross sections of the fuel materials are different. 

Each BWR assembly is analyzed with and without a cruciform control blade inserted. All 

BWR fuel assemblies are one-half symmetric. For the PWR fuel assemblies, again the 

geometry dimensions and location of materials are identical for each fuel assembly. The 

difference between the assemblies is the fuel reactivity. The PWR fuel assemblies are 

one-eighth symmetric. The most reactive PWR fuel assembly is also analyzed with a 

control rod cluster inserted. Dimensions for the two geometries are provided in Table 4.1. 
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Table 4.1. Fuel Assembly Dimensions for the Tv/o-Dimensional Problems. 

BWR 

Pitch 1.63 cm 

Can Thickness 0.4 cm 

Wide Water Gap 1.0 cm 

Narrow Water Gap 0.5 cm 

Control Blade Thickness* 0.8 cm 

PWR** 

Pitch 1.43 cm 

* The control blade thickness is the full width of the control blade, only half of 
which is in a fuel assembly. 

** The thin water gap between PWR assemblies is neglected. 
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BWR Fuel Assemblies. The geometries of the BWR fuel assemblies are shown 

in Figures 4.2 through 4.4. The BWR fuel can and the control blade are shown in these 

figures. Each assembly is analyzed with and without the control blade inserted. The fuel 

pin loading is homogeneous with the exception of the fuel in the most reactive assembly 

shown by Figure 4.2. This assembly contains three fuel pins in the upper right corner that 

have a lower reactivity than the remaining; fuel. 

The global reactor problem is displayed in Figure 4.5 along with the location of 

the control blade. The outer boundaries of the global reactor problem are reflective. Also 

shown in Figure 4.5 is the rotation of each fuel assembly. The rotation places the wide 

water gap and the control blade position in the proper location. Fuel assemblies with an 

asterisk have the control blade inserted. As seen in Figure 4.5, the global reactor problem 

is composed of six distinct fuel assemblies. These six assemblies are the three different 

fuel reactivities with and without the inserted cruciform control blade. Assembly A is 

more reactive than assembly B and assembly B is more reactive than assemble C. 
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Figure 4.2. Geometry of BWR Fuel Assembly A. 
( Most reactive BWR assembly. ) 
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Figure 4.3. Geometiry of BWR Fuel Assembly B. 
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Figure 4.4. Geometiy of BWR Fuel Assembly C. 
( Least reactive BWR assembly. ) 
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Figure 4.5. Global Reactor Geometry for the BWR Problem. 
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PWR Fuel Assemblies. The PWR fuel assemblies have a 15x15 pin design with 

21 water holes. The water holes represent the only heterogeneity in the assemblies except 

for a control rod cluster inserted in the most reactive assembly. The control rod cluster 

contains eight control pins. Asterisks in Figure 4.6 show the location of the eight pins. 

The PWR fuel assembly geometries are displayed in Figures 4.6 through 4.8. 

The global reactor problem for the PWR geometry, seen in Figure 4.9, shows that 

two of the most reactive fuel assemblies have a control rod cluster inserted. Since the 

PWR fuel assemblies are one-eighth symmetric, no rotation of the fuel assemblies is 

necessary. The outer boundaries of the global reactor problem are reflective. As seen in 

Figure 4.9, the global reactor geometry is composed of four distinct fuel assemblies. 

Assembly D is more reactive than assembly E and assembly E is more reactive than 

assembly F. 
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Figure 4.6. Geometry of PWR Fuel Assembly D. 
( Most reactive PWR assembly. ) 

116 



2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
2 2 2 2 2 2 2 2 2 2 2 
2 2 2 2 2 2 2 2 2 2 2 2 2 2 
2 2 2 2 2 2 2 .2 2 2 2 2 2 
2 2 2 2 2 2 2 2 2 2 2 2 2 
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
2 2 2 2 •2 2 2 2 2 2 2 2 
2 2 2 2 0 2 2 2 2 2 2 2 2 2 2 
2 2 2 2 2 2 2 2 2 2 2 2 2 
2 2 2 2 2 2 2 2 2 2 2 2 2 
2 2 2 2 2 2 2 2 2 2 2 2 2 2 
2 2 2 9 

4 l 
2 2 2 2 2 2 2 

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
2 2 2 2 .2 2 2 2 2 2 2 2 2 2 2 

Figure 4.7. Geometiy of PWR Fuel Assembly E 
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Figure 4.8. Geometry of PWR Fuel Assembly F, 
( Least reactive PWR assembly. ) 
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Figure 4.9. Global Reactor Geometry of the PWR Problem. 
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Heterogeneous Cross Sections 

The heterogeneous cross sections for the BWR and PWR assemblies are listed in 

Table 4.2. The BWR assemblies use the water gap material ( material 4 ) and the PWR 

assemblies use the water hole material ( material 5 ). The absorber material is used for 

the cruciform control blade in the BWR assemblies and the control rod cluster of the 

PWR assemblies. 

Heterogeneous diffusion coefficients are not listed in Table 4.2. The COMBINE 

cross section generation code has as output Px or P3 scattering cross sections and diffusion 

coefficients. Scattering cross sections are given in Table 4.2 because they are essential for 

the transport calculations but the diffusion coefficients are not. From a transport 

calculation, there are several methods to compute a homogenized diffusion coefficient. 

Therefore, because of the arbitrary nature of the homogeneous diffusion coefficient, 

Table 4.2 excludes the heterogeneous diffusion coefficients. 

In the heterogeneous cross section set, Fuel 1 is U02 with an enrichment of 3.1%, 

Fuel 2 is U02 with an enrichment of 2.6%, and Fuel 3 is U02 with an enrichment of 

2.1%. These different enrichments provide the different reactivities for the fuel 

assemblies. 

120 



Table 4.2. Reference Transport Theory Cross Sections for the 
Two-Dimensional Studies, cm"1 ( No upscattering ) 

Material Group 2 a S f v 2 f 

1 1 1.016e-02 2.876e-03 7.346e-03 

(Fuel) 2 1.003e-01 6.171e-02 1.504e-01 

2 1 9.789e-03 2.580e-03 6.622e-03 

(Fuel) 2 9.027e-02 5.274e-02 1.285e-01 

3 1 9.399e-03 2.274e-03 5.872e-03 

(Fuel) 2 7.989e-02 4.346e-02 1.059e-01 

4 1 9.461e-04 0 0 

(W. Gap) 2 3.639e-02 0 0 

5 1 1.025e-03 0 0 

(W. Hole) 2 3.309e-02 0 0 

6 1 9.699e-03 0 0 

(Absorber) 2 3.398e-01 0 0 

7 1 1.043e-03 0 0 

(Can) 2 4.394e-03 0 0 

Scattering Energy Group 

Material Order 1 to 1 1 to 2 2 to 2 

1 P0 5.087e-01 1.557e-02 1.150e+00 

(Fuel) P, 1.706e-01 3.981e-03 3.089e-01 

2 Pf> 5.093e-01 1.585e-02 1.161e+00 

(Fuel) Pi 1.709e-01 4.073e-03 3.088e-01 

3 Po 5.099e-01 1.614e-02 1.173e+00 

(Fuel) Pi 1.712e-01 4.170e-03 3.087e-01 

4 Po 6.018e-01 3.570e-02 2.005e+00 

(W. Gap) Pi 2.439e-01 7.074e-03 5.550e-01 

5 Po 5.767e-01 3.2^t0e-02 1.813e+00 

(W. Hole) Pi 2.300e-01 6.959e-03 4.965e-01 

6 Po 4.325e-01 1.080e-02 8.745e-01 

(Absorber) Pi 1.399e-01 2.103e-03 2.662e-01 

7 P0 2.071e-01 9.09.5e-03 4.704e-01 

(Can) ?! 0.000e+00 Q.000e+00 0.000e+00 
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4.4 Reference Solutions and Solutions using Infinite Lattice 

Homogenized Parameters 

In this section, reference solutions are established for the two global reactor 

problems. An Ss angular 'quadrature set is used to analyze the global reactor geometries 

to obtain the reference solutions. In the BWR geometry, the mesh spacing for the fuel 

pins is 3 meshes per pin. The BWR can, narrow water gap, and control blade are divided 

into 2 meshes and the wide water gap is divided into 4 meshes. Thus, the global BWR 

problem size is 102x102 meshes. For the PWR geometry, each fuel pin is divided into 

3 meshes and so the global problem size is 135x135 meshes. The convergence criterion 

for the multiplication factor is 1.0e-06 and the convergence criterion for the scalar flux 

is 5.0e-06. All single assembly calculations use the same quadrature set, mesh spacing and 

convergence criteria as the reference global solution. 

Infinite lattice homogenized parameters are found for each distinct fuel assembly 

using reflective boundary conditions. The homogenized parameters are listed in 

Tables D.l through D.3 for the BWR fuel assemblies and Tables D.4 through D.6 for the 

PWR fuel assemblies. For infinite lattice homogenized parameters, the flux discontinuity 

factor is equal to the edge-to-average flux ratio. 

Using NDT, global reactor solutions are found using the infinite lattice 

homogenized parameters along with different flux approximations. Normalized powers 

from the reference solutions are provided in Tables 4.3 and 4.4 for the BWR and PWR 

geometries, respectively, and errors in the normalized powers from the various nodal 
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solutions are also given in these tables. The multiplication factor found by each solution 

is also listed in Tables 4.3 and 4.4. 

The nodal solutions used in Tables 4.3 and 4.4 are the mesh centered finite 

difference ( F.D. ), quadratic polynomial, and quartic polynomial flux approximations. 

Examining these two tables does not clearly show that one flux approximation is any 

better than the next, but rather that different flux approximations simply produce different 

results as expected. Nevertheless, in the BWR geometry, the quartic polynomial flux 

approximation produces the most favorable results for the power profiles. With this 

solution, the maximum error and RMS error of the assembly powers are 2.30% and 

1.21%, respectively. The mesh centered finite difference flux approximation provides the 

most favorable results for the PWR geometry. This solution results in a maximum 

assembly power error of 3.83% and a RMS assembly power error of 2.11%. These tables 

provide comparison results for any method to improve homogenized parameters. 

123 



Table 4.3. Reference Normalized Powers and Errors using Different Flux Approximations 
with the Infinite Lattice Homogenized Parameters for the BWR Geometry. 

Eigenvalue 

Reference 1.02600 

F.D. 1.02544 

Quadratic 1.02385 

Quartic 1.02402 

0.8608 

-3.94% 

-5.39% 

-1.68% 

1.1375 

0.33% 

1.92% 

0.10% 

1.4317 

2.35% 

7.36% 

2.30% 

0.8977 

-1.81% 

-3.69% 

-1.65%) 

0.7940 

2.83% 

-2.44% 

-0.40% 

1.0066 

1.82% 

-0.06% 

-0.22% 

0.7856 

-3.93% 

-6.50% 

-1.22% 

0.9691 

0.82% 

0.38% 

0.66% 

1.1169 

-0.45% 

1.76% 

0.35% 
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Table 4.4. Reference Normalized Powers and Errors using Different Flux Approximations 
with the Infinite Lattice Homogenized Parameters for the PWR Geometry. 

Eigenvalue 

Reference 1.10516 

F.D. 1.10531 

Quadratic 1.10416 

Quartic 1.10437 

1.0070 

••1.57% 

-1.23% 

-1.26% 

0.9128 

1.89% 

-1.33% 

-0.66% 

1.1448 

1.16% 

2.80% 

2.97% 

0.8119 

-1.99% 

-4.91%) 

-3.99% 

1.1887 

-3.34% 

2.25% 

1.72% 

1.1179 

3.83% 

4.27% 

3.25% 

0.8494 

-1.47% 

-3.98% 

-5.48% 

0.8520 

0.11% 

-3.40% 

-2.31% 

1.1155 

0.88% 

1.84% 

2.39% 
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4.5 Global Reactor Solutions using Homogenized Parameter 

Correlations 

In this section, the two global reactor problems are analyzed using correlations to 

adjust homogenized parameters based on information from the global reactor solutions. 

First, correlations for the BWR and PWR fuel assemblies are found. Then, the number 

of times to adjust the homogenized parameters to arrive at a final solution is discussed. 

In Chapter III, it was stated that correlations can account for differences in flux 

approximations and diffusion coefficients. Thus, a portion of this section is devoted to 

analyzing the global solutions with different flux approximations and diffusion 

coefficients. 

Finding Correlation Coefficients 

A procedure to find correlation coefficients for the homogenized parameters is 

described in this segment. Since equation (1.13) shows how to use the correlation 

coefficients after they are found, it should also show how to find the correlation 

coefficients. Comparing different sets of homogenized parameters, each with different 

current-to-flux ratios on the boundary, leads to values for the correlation coefficients by 

employing equation (1.13). Rearranging equation (1.13) defines the correlation coefficient 

associated with a node face and energy group for each homogenized parameter. One 

calculation needed to find the correlation coefficient is the infinite lattice calculation that 

is readily available for nodal analyses. The other has a current imposed on one boundary 

of the node to simulate a global flux tilt through the node volume. As discussed in 

126 



Chapter III, the shifted circle boundary condition accurately models the global flux tilt 

and so it is implemented throughout this chapter. Once the current created by the 

boundary condition and the average flux in the node are known, then it is a simple 

procedure to use equation (1.13) to compute the correlation coefficients associated with 

the current. 

The value of the current used to create a global flux tilt through the node should 

be large enough to reveal changes in the node conditions ( i.e., much larger than 

truncation and round-off errors ) and yet within a practical current-to-flux ratio range. 

Therefore, a current-to-flux ratio of approximately ±5% should be sufficient for BWR and 

PWR analyses. Each of the ten distinct fuel assemblies ( six BWR assemblies and four 

PWR assemblies ) of Section 4.3 are analyzed using this current-to-flux ratio. 

Using symmetry conditions reduces the number of single assembly calculations 

needed to find a complete set of correlation coefficients. The complete set of correlation 

coefficients describes changes due to current-to-flux ratios from all node surfaces and 

energy groups. With symmetry conditions, the BWR assembly requires four single 

assembly calculations in addition to the infinite lattice calculation to form a complete set 

of correlation coefficients and the PWR assembly requires two additional single assembly 

calculations. The symmetry conditions do not describe the model for the fuel assembly, 

as is usually the case, but the manner that a current-to-flux ratio affects the homogenized 

parameters. For instance, symmetry for the BWR assembly in Figure 4.2 does not refer 

that only half the assembly is modelled but that a current-to-flux ratio on the left 
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boundary affects the homogenized parameters identically to a current-to-flux ratio on the 

bottom boundary. If we used symmetry to model only half of the BWR assembly in 

Figure 4.2 with a current on the left boundary, then this is identical to modelling the full 

assembly with a current on the left and bottom boundaries. In this case, the effect that 

each current places on the cross sections can be decoupled because each current affects 

the cross sections equally ( cross sections are volume integrated ). However, it is 

impossible to separate the effect that each current has on an edge-to-average flux ratio 

without additional calculations ( edge fluxes are surface integrated ). Obviously, the 

current on the left boundary affects the left edge-to-average flux ratio differently than the 

current on the bottom boundary. Assuming that both currents affect the edge-to-average 

flux ratios equally will create extremely large errors in the correlation coefficients. 

The correlation coefficients for the six BWR fuel assemblies are provided in 

Tables D.7 through D.12 and the coefficients for the four PWR fuel assemblies are 

provided in Tables D.13 through D.16. The correlation coefficients are based on a current 

entering the node having a positive value as opposed to currents moving the right or 

upward being positive. 
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Convergence Characteristics using Different Flux Approximations 

It is demonstrated in this segment that computing the flux discontinuity factors by 

equation (3.4) results in identical solutions when the nodal code uses different flux 

approximations. The homogenized parameters are adjusted twenty times for each analysis 

to arrive at a solution that is well within practical convergence limits. The flux 

approximations used in the nodal code are the mesh centered finite difference, quadratic 

polynomial, and quartic polynomial approximations. The eigenvalue and errors in the 

assembly powers for the two sample geometries are presented in Tables 4.5 an 4.6. Also 

examined in this segment are the convergence rates of the three flux approximations. 
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Table 4.5. Eigenvalues and Errors in the Power Profiles using Different Flux 
Approximations found after updating the Homogenized Parameters Twenty Times for the 
BWR Geometry. 

Flux 

Approx. Eigenvalue 

F.D. 1.02608 

Quadratic 1.02608 

Quartic 1.02608 

0.11% 

0.11% 

0.11% 

-0.30% 

-0.29% 

-0.30% 

0.77% 

0.77% 

0.77% 

-1.20% 

-1.20% 

-1.21% 

0.34% 

0.34% 

0.34% 

0.10% 

0.10% 

0.11% 

0.31% 

0.31% 

0.30% 

-0.51% 

-0.51% 

-0.51% 

0.09% 

0.09% 

0.10% 
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Table 4.6. Eigenvalues and Errors in the Power. Profiles using Different Flux 
Approximations found after updating the Homogenized Parameters Twenty Times for the 
PWR Geometry. 

-1.06% 

-1.06% 

-1.08% 

0.37% 

0.39% 

0.38% 

0.61% 

0.62% 

0.64% 

-0.35% 

-0.34% 

-0.35% 

-0.91% 

-0.92% 

-0.92% 

1.64% 

1.63% 

1.64% 

-041% 

-0.44% 

-0.46% 

-0.09% 

-0.07% 

-0.07% 

-0.01% 

-0.01% 

-0.01% 

Flux 

Approx. 

F.D. 

Quadratic 

Ouartic 

Eigenvalue 

1.10531 

1.10532 

1.10532 



As seen in Tables 4.5 and 4.6, all three flux approximations result in identical 

solutions ( neglecting round-off and truncation errors ). For the BWR problem, the 

maximum assembly power error reduced from. 2.30% to 1.21% and the RMS error of the 

assembly powers reduced from 1.21% to 0.54%. The difference in the eigenvalue from 

reference reduced from 0.00198 to -0.00008. Similady for the PWR problem, the 

maximum assembly power error reduced from 3.83% to 1.64% and the RMS assembly 

power error reduced from 2.11% to 0.78%. The difference in the eigenvalue from 

reference reduced from 0.00079 to -0.00016. These, results show that the employing the 

correlations in the nodal analyses causes errors in the assembly powers to reduce by 

approximately a factor of two. As a conservative measure, the results in Tables 4.5 and 

4.6 were compared to the best infinite lattice solution from Tables 4.3 and 4.4. These 

results demonstrate that the final solution is independent of the flux approximation used 

in the nodal code. 

The final solution being independent of the flux approximation is an extremely 

important result because it proves that the correlations allow a simple flux approximation 

such as the finite difference model to produce solutions identical to complex flux 

approximations such as the quartic polynomial that uses a moments weighing technique 

and a quadratic transverse leakage shape. Because of the moments weighing technique 

and quadratic transverse leakage shape, the complex flux approximation is more expensive 

to code and more expensive to solve a problem than the simpler finite difference 

approximation. This obviously benefits using simpler flux approximations. 
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However, further examination of the number of limes to adjust the homogenized 

parameters to reach practical convergence clearly favors the more complex flux 

approximation. The eigenvalue reached at the end of each flux and eigenvalue 

convergence loop associated with each adjustment in the homogenized parameters is listed 

in Tables 4.7 and 4.8 for the BWR and PWR geometries, respectively. It is seen in both 

tables that the quartic polynomial flux approximation requires fewer adjustments to reach 

practical convergence on the problem than the mesh centered finite difference 

approximation. This consequence is directly associated to the accuracy of the flux 

approximation. Because the quartic polynomial is generally a more accurate 

approximation than the quadratic and finite difference approximations, it produces better 

global reactor results ( i.e., better current-to-flux ratios ) than the other approximations 

and, in turn, these improved results lead to faster convergence with the correlations. 

A good measure of the convergence rate is to compare the eigenvalue after the 

first homogenized parameter adjustment to the eigenvalue found after twenty adjustments. 

The eigenvalue after the twentieth adjustment is used because this is the solution that the 

nodal code ultimately reaches rather than the reference solution. For the BWR problem 

using the finite difference approximation, the difference in the eigenvalues is 0.00023. 

This shows good improvement compared to the 0.00064 difference found 

without adjusting the homogenized parameters. The quadratic polynomial also shows good 

improvement for the BWR geometry by having a difference in eigenvalues of 0.00016. 

However, after only one adjustment, the quartic polynomial approximation shows 
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excellent agreement with the eigenvalue for the BWR geometry. Similar results are seen 

in the PWR geometry. In these cases, the quartic polynomial needs only one adjustment 

on the homogenized parameters to result in excellent agreement with the converged 

eigenvalue. 
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Table 4.7. Eigenvalue at the End oi: Each Flux and Eigenvalue Convergence Loop for the 
BWR Geometry using Different Flux Approximations. 

Adjustment # F.D. Quadratic Quartic 

Initial 1.02544 1.02385 1.02402 

1 1.02585 1.02592 1.02608 

2 1.02585 1.02599 1.02606 

3 1.02592 1.02603 1.02607 

4 1.02597 1.02605 1.02607 

5 1.02600 1.02606 1.02607 

6 1.02602 1.02607 1.02607 

7 1.02604 1.02607 1.02607 

8 1.02605 1.02607 1.02607 

9 1.02606 1.02607 1.02607 

10 1.02606 1.02608 1.02607 

11 1.02607 1.02608 1.02608 

12 1.02607 1.02608 1.02608 

13 1.02607 1.02608 1.02608 

14 1.02607 1.02608 1.02608 

15 1.02607 1.02608 1.02608 

16 1.02607 1.02608 1.02608 

17 1.02608 1.02608 1.02608 

18 1.02608 1.02608 1.02608 

19 1.02608 1,02608 1.02608 

20 1.02608 1.02608 1.02608 
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Table 4.8. Eigenvalue at the End of Each Flux and Eigenvalue Convergence Loop for the 
PWR Geometry using Different Flux Approximatioos. 

Adjustment # F.D. Quadratic Quartic 

Initial 1.10531 1.10416 1.10437 

1 1.10490 1.10507 1.10531 

2 1.10499 1.10517 1.10532 

3 1.10507 1.10523 1.10532 

4 1.10512 1.10526 1.10532 

5 1.10516 1.10528 1.10532 

6 1.10520 1,10530 1.10532 

7 1.10522 1.10530: 1.10532 

8 1.10524 1.10531 1.10532 

9 1.10526 1.10531 1.10532 

10 1.10527 1.10531 1.10532 

11 1.10528 1.10531 1.10532 

12 1.10529 1.10531 1.10532 

]3 1.10529 1.10532 1.10532 

14 1.10530 1.10532 1.10532 

15 1.10530 1.10532 1.10532 

16 1.10530 1.10532 1.10532 

17 1.10531 1.10532 1.10532 

18 1.10531 1.10532 1.10532 

19 1.10531 1.10532 1.10532 

20 1.10531 1.10532 1.10532 
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Convergence Characteristics using Different Diffusion Coefficients 

The two global reactor geometries are analyzed in this segment using abnormal 

diffusion coefficients. The goal of performing these analyses is to determine if the 

diffusion coefficient is an arbitrary parameter as discussed in Section 3.4. Since it was 

found that the quartic polynomial flux approximation provides superior convergence 

results than the finite difference or quadratic polynomial flux approximations, analyses 

in this segment use the quartic flux approximation. For all assemblies in both geometries, 

typical values for the diffusion coefficients are approximately 1.4 cm and 0.7 cm for the 

fast and thermal energy groups, respectively. This segment replaces the diffusion 

coefficients given in Tables p . 1,through D.6 with the following combinations; (i) 1.0 cm 

and 0.5 cm, (ii) 0.7 cm and 0.2 cm, and (iii) 2.8 cm and 0.8 cm for the fast and thermal 

energy groups, respectively. These values will not affect the continuity of current 

equations ( equations (2.28) ) because the diffusion coefficients in adjacent nodes are 

equal and will cancel out. However, they will alter the leakage in the neutron balance 

equation and, thus, alter the currents and the average fluxes in each node. 
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Table 4.9. Eigenvalues and Enors in the Power Profiles using Various Diffusion 
Coefficients with the Quartic Flux Approximation after updating the Homogenized 
Parameters Twenty Times for the BWR Geometry. 

Diffusion 

Coefficients Eigenvalue 

1.0/0.5 1.02607 

0.7 / 0.2 1.02608 

2.8 / 0.8 diverged 

0.10%) 

0.11%) 

-0.30% 

-0.29% 

0.77% 

0.77% 

-1.22% 

-1.21% 

0.34% 

0.34% 

0.12% 

0.11% 

0.28%) 

0.30%) 

-0.51% 

-0.52% 

0.11% 

0.09% 
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Table 4.10. Eigenvalues and Errors in the Power Profiles using Various Diffusion 
Coefficients using the Quartic Flux Approximation after updating the Homogenized 
Parameters Twenty Times for the PWR Geomeitry. 

-1.08% 

-1.06% 

0.39% 

0.39% 

0.64% 

0.62% 

-0.35% 

-0.34% 

-0.92% 

-0.92% 

1.64% 

1.63% 

-0.46%. 

-0.45%. 

-0.07% 

-0.07% 

-0.01% 

0.00% 

Coefficients Eigenvalue 

1.0/0.5 1.10532 

0.7 / 0.2 1.10532 

2.8 / 0.8 diverged 



As seen in Tables 4.9 and 4.10, two of the three diffusion coefficient sets 

converged to identical solutions as presented in Tables 4.5 and 4.6. Therefore, using 

diffusion coefficient sets of 1.0/0.5 and 0.7/0.2 also reduced assembly power errors by a 

factor of two compared to the best solution using infinite lattice homogenized parameters 

without correlations. Also, these two sets of diffusion coefficients reduced the error in the 

eigenvalue compared to the best nodal solution using infinite lattice homogenized 

parameters. Results from these tables prove that evaluating the flux discontinuity factor 

by correlating the transport theory edge-to-average flux ratio does account for 

uncertainties in the diffusion coefficient provided that values of the diffusion coefficients 

are within reason. A reasonable diffusion coefficient can be found by any of the common 

techniques presently used to find diffusion coefficients. This can include flux and volume 

weighing the heterogeneous diffusion coefficients, flux and volume weighing the 

heterogeneous transport cross sections then multiplying by three and inverting, or any 

other well-known method. These methods should all result in diffusion coefficients that 

are within a general expected range. For example, a range of 1.0 to 1.8 for the fast energy 

group of a light water reactor. 

In the analyses where the solution diverged, the large diffusion coefficients 

overpredicted the currents on the node boundaries. This, in turn, caused the current-to-flux 

ratios of the nodal solution to be larger than the reference current-to-flux ratios and, 

therefore, the adjusted homogenized cross sections were overpredicted. More importantly, 

the correlated values of the edge-to-average flux ratios were also overpredicted. These 
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adjustments lead to an oscillating effect of overpredicting and underpredicting the 

homogenized parameters and, thus, the iterative procedure diverged. Negative values of 

the diffusion coefficient were not examined because of convergence characteristics of the 

neutron balance equation associated with the negative diffusion coefficients. 

As in the previous segment, an important feature to examine is how often the 

homogenized parameters are adjusted to reach practical convergence for the various sets 

of diffusion coefficients. As before, examining the eigenvalue at the end of a series of 

outer iterations ( when the flux and eigenvalue have converged for the given set of 

homogenized parameters ) provides some insight to the dilemma. The eigenvalue found 

after each adjustment to the homogenized parameters is listed in Tables 4.11 and 4.12 for 

the BWR and PWR geometries, respectively. Comparing the third column of Table 4.7 

to Table 4.11 shows that the reasonable values for the diffusion coefficients ( ~ 1.4/0.4 

from Table 4.7 ) require fewer adjustments to the homogenized parameters to reach 

practical convergence than the arbitrary diffusion coefficients used to generate Table 4.11. 

However, results in the first column of Table 4.11 suggests that great accuracy ( accuracy 

greater than one-tenth ) for the diffusion coefficient may be unnecessary. Comparing 

Tables 4.8 and 4.12 show the same conclusions for the PWR geometry. 

These results can aid in simplifying the .diffusion equations. For example, if the 

diffusion coefficients for an energy group are equal for all assemblies, then the diffusion 

coefficient will cancel out in the continuity of current equation ( equation (2.28) ). This 

leads to a simpler equation to program in a nodal code. 
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Table 4.11. Eigenvalue at the End of Each Flux and Eigenvalue Convergence Loop for 
the BWR Geometry using Various Diffusion Coefficients. 

Adjustment # 1.0/0.5 0.7/0.2 2.8/0.8 

Initial 1.02527 1.02773 1.02259 

1 1.02611 1.02599 1.02596 

2 1.02607 1.02605 1.02607 

3 1.02607 1.02607 1.02609 

4 1.02607 1.02607 1.02605 

5 1.02607 1.02608 1.02612 

6 1.02607 1.02608 1.02599 

7 1.02607 1.02608 1.02616 

8 1.02607 1.02608 1.02587 

9 1.02607 1.02608 1.02638 

10 1.02607 1.02608 diverged 

11 1.02607 1.02608 

12 1.02607 1.02608 

13 1.02607 1.02608 

14 1.02607 1.02608 

15 1.02607 1.02608 

16 1.02607 1,02608 

17 1.02607 1,02608 

18 1.02607 1,02608 

19 1.02607 

1 rVOiCAT 

1:02608 
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Table 4.12. Eigenvalue at the End of Each Eiux and Eigenvalue Convergence Loop for 
the PWR Geometry using Various Diffusion Coefficients. 

Adjustment # 1 

Initial 1 

1 1 

2 1 

3 1 

4 1 

5 1 

6 1 

7 1 

8 1 

9 1 

10 1 

11 1 

12 1 

13 1 

14 1 

15 1 

16 1 

17 1 

18 1 

19 1 

.0 / 0.5 0.7 / 0.2 

.10497 1.10570 

.10531 1.10523 

.10532 1.10528 

.10532 1.10530 

.10532 1.10531 

.10532 1.10531 

.10532 1.10532 

.10532 1.10532 

.10532 1.10532 

.10532 1.10532 

.10532 1.10532 

.10532 1.10532 

.10532 1.10532 

.10532 1.10532 

.10532 1.10532 

.10532 1.10532 

.10532 1.10532 

.10532 1.10532 

.10532 1.10532 

.10532 1.10532 

.10532 1.10532 

2.8 / 0.8 

1.10376 

1.10521 

1.10537 

1.10529 

1.10533 

1.10531 

1.10532 

1.10532 

1.10532 

1.10532 

1.10533 

1.10536 

1.10543 

1.10556 

1.10615 

1.10649 

diverged 
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Conclusions for Applying Correlations to Homogenized Parameters 

It was numerically proven in this section diat applying global reactor information 

( current-to-flux ratios ) to the homogenized parameters increases the accuracy of the 

global reactor solution by approximately a factor of two compared to solutions that do not 

use global reactor information to adjust the homogenized parameters. Additionally, it was 

shown that concerns for the accuracy of the nodal code flux approximation and diffusion 

coefficients are eased by applying correlations to me homogenized parameters. Except for 

large values for the diffusion coefficients, it was demonstrated that different flux 

approximations and diffusion coefficients all result in identical solutions for the two 

sample geometries. This is because the infinite lattice homogenized parameters and 

correlations to adjust them are independent of the flux approximation in the nodal code 

and the homogenized diffusion coefficient. 

However, it was also pointed out that better flux approximations and diffusion 

coefficients require fewer adjustments to the homogenized parameters to reach a 

practically converged solution. A fully converged solution results in identical flux profiles 

before and after making adjustments to the homogenized parameters. It was shown that, 

with a superior flux approximation and reasonable values for diffusion coefficients, only 

a couple of adjustments to the homogenized parameters are necessary to reduce the 

assembly power errors by a factor of two. 

For the diffusion coefficients, only reasonable values are necessary for the flux and 

eigenvalue iterations. This means that computer codes can eliminate storage requirements 
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for the diffusion coefficient in favor of one approximate diffusion coefficient for each 

energy group for all fuel assemblies. For example, in common BWR or PWR fuel 

assemblies, the diffusion coefficient can simply be set at 1.4 cm and 0.4 cm for two group 

problems. The reflector may need a separate diffusion coefficient for each energy group. 

4.6 Approximations to Correlation Coefficients 

In this section, the correlation coefficients for the different fuel assemblies are 

compared to each other. As seen in Appendix D for the BWR assemblies, each set of 

homogenized parameters requires storage of 52 correlation coefficients assuming one-half 

symmetry and two energy groups ( 5 cross sections plus 8 edge-to-average flux ratios 

times 4 current-to-flux ratios ). This increase in the storage requirements is a 

disadvantage to applying global reactor information to the homogenized parameters. The 

purpose of this section is to examine methods to reduce the storage requirements for the 

correlation coefficients by finding and eliminating the weak dependencies. 

In a quick comparison of values for the correlation coefficients in Appendix D, 

the magnitudes of the cross section coefficients are different from the magnitudes of the 

edge-to-average flux ratio coefficients. The edge-to-average flux ratio coefficients are 

much larger than the coefficients for the cross sections. Therefore, no comparison is made 

between these two categories of homogenized parameters. 
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Effect of Thermal Group Currents on Fast Group Homogenized Parameters 

For the two group problems in this thesis, examining the correlation coefficients 

shows that thermal energy group current-to-flux ratios do not show strong effects on the 

fast energy group homogenized parameters. These coefficients are approximately a factor 

of ten smaller than the other coefficients. This suggests that these effects are weak and 

opens the possibility of neglecting the them. However, for the BWR geometry, neglecting 

these effects results in a maximum assembly power error of 1.97% and the RMS 

assembly power error is 0.90%. Similarly for the PWR geometry, the maximum error is 

3.70% and the RMS error is 1.69%. These errors do not show much improvement over 

the best solution using infinite lattice homogenized parameters without correlations. Thus, 

the thermal group current-to-flux ratio correlation coefficients affecting the fast group 

homogenized parameters are smaller than other coefficients, but they are necessary to 

obtain accurate global reactor solutions. 

Effect of a Current on the Edge-to-Average Flux Ratios of Orthogonal Surfaces 

Another observance in most sets of correlation coefficients is that a current 

crossing one surface (the left surface for instance ) minutely affects the edge-to-average 

flux ratio correlation coefficients on an orthogonal surface ( the top or bottom 

edge-to-average flux ratios ). In the PWR fuel assemblies, this consequence is not 

surprising because of the symmetry of the fuel assemblies. Looking along the face of any 

of the PWR assemblies, the top face of Figure 4.6 for example, the materials are all fuel 

pins with identical cross sections. Thus, the flux shape across the top boundary will not 
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have a local maxima or minima. In this figure, if a current is present on the left surface 

coming into the assembly, then we expect the edge-to-average flux ratio on the top 

boundary near the left side to be high and the edge-to-average flux ratio near the right 

boundary to be low. Since equivalence theory is concerned with integral results, 

integrating the edge flux shape across the top boundary- when a current is present on the 

left surface has little effect on the top edge flux value. For the PWR global reactor 

problem, neglecting these effects results in a maximum assembly power error of 1.65% 

and a RMS error of 0.80%. These errors are minutely increased from errors that include 

the orthogonal effects. 

However, in the BWR fuel assemblies, the effect that a current has on an 

edge-to-average flux ratio on a surface with a control blade inserted is large. In Figure 4.2 

for example, a current on the left boundary has a significant effect on the edge-to-average 

flux ratio on the top surface but not the bottom surface. This is because the material along 

the bottom surface is uniform ( water ) and the materials along the top surface are part 

water and part absorber. When the: edge flux is integrated along the top surface, a current 

on the left boundary causes a large change in the top edge flux value. 

Surprisingly, neglecting the effect that currents have on the edge-to-average flux 

ratio on orthogonal surfaces actually leads to improved results for the BWR geometry. 

The maximum assembly power error is 0.66%, almost half that of the maximum error 

when accounting for these effects. Leaving out these orthogonal effects also reduces the 

RMS assembly power error from 0.54% to 0.36%. However, these results for the BWR 
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geometry should not imply that ignoring the effects that a current has on an 

edge-to-average flux ratio on an orthogonal surface always improves the global reactor 

solution. In the geometry at hand, the outer boundaries are reflective ( i.e., no current ) 

and they do not contain the control blade. As such, there are few surfaces that actually 

contribute to these effects. In a full model of a BWR reactor, the global solution will 

contain many currents that affect the edge-to-average flux ratio on the orthogonal 

surfaces. Thus, it may be acceptable to overlook the effect that a current has on the 

edge-to-average flux ratio on an orthogonal surface provided that the material near the 

orthogonal surface is uniform. 

Effects of Currents in Assemblies with Similar Material Arrangements 

It can be seen in the tables in Appendix D that the correlation coefficients are 

largely dependent on the material arrangement in the assembly. In the BWR fuel 

assemblies analyzed, the geometries ( dimensions ) are identical. However, the correlation 

coefficients for an assembly with the control blade inserted are vastly different from an 

assembly without the control blade. This difference represents a different material 

arrangement. Each assembly is also analyzed with different fuel cross sections. This is not 

a different material arrangement because fuel is not replaced by a different material type 

such as water or absorber. -Examining the three BWR fuel assemblies without the control 

blade shows that the correlation coefficients are nearly identical. The same holds true for 

the BWR fuel assemblies with the control blade and the PWR fuel assemblies without the 

control rod cluster inserted. This implies that the coefficients show little dependence on 
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details of the fuel cross sections provided that the fuel cross sections are equal in all fuel 

pins. 

Analyzing the global reactor problems with identical correlation coefficients for 

similar assemblies does not create significant errors in the global reactor solutions. The 

BWR geometry using the correlation coefficients of Table D.7 for the five assemblies 

without control and the correlation coefficients of Table D.8 for the four assemblies with 

the control blade results in a maximum assembly power error of 1.22% and a RMS error 

of 0.66%. Similarly for the PWR geometry, using the coefficients of Table D.13 for all 

fuel assemblies without a control rod cluster inserted results in a maximum assembly 

power error of 1.49% and a RMS error of 0.87%. These errors are commensurate to 

errors using the correct correlation coefficients for all assemblies. 

In the previous discussion, the only differences in the various assemblies are 

values of the heterogeneous fuel cross sections. Another consideration to explore is the 

change in the correlation coefficients when the fuel temperature changes or when voiding 

of water occurs in a BWR assembly. The heterogeneous fuel pin cross sections used in 

previous sections correspond to hot zero power conditions ( 565 °K ). When the fuel 

temperature is increased from 565 °K to 1000 °K, the resulting change in the correlation 

coefficients, listed in Table D.17, are small. Thus, correlation coefficients have a very 

weak dependency on fuel temperature changes, again, provided that the fuel temperatures 

uniformly change in all fuel pins in an assembly. Listed in Table D.18 are the correlation 

coefficients for the BWR assembly B with a control blade inserted when the water is 40% 
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voided. Comparing these correlation coefficients to Table D.IO ( 0% void ) shows 

noticeable changes in the coefficients for both cross sections and edge-to-average flux 

ratios. However, these changes are not much different than the changes between 

assemblies with different fuel enrichments. 

Still another consideration is related to burnup effects. Often, computer codes use 

quadratic polynomials to keep track of intra-assembly burnup characteristics. If the burnup 

is not flat throughout the fuel pins, then the correlations coefficients can show a notable 

change. To test this, the heterogeneous fuel cross sections are adjusted linearly for the 

B W R fuel assembly B that has the control blade inserted. Each cross section in the fuel 

material is adjusted according to 

S ; = E( 1.125-0.025 i ) ( 4 J ) 

where i is an index for the fuel pin cell. For the far left fuel pin cells, i = 1 and for the 

far right pin cells, i = 8. Thus the fuel cross sections range from a ten percent increase 

to a seven and a half percent decrease in all cross sections. The fuel cross sections are 

constant across a top to bottom traverse. 

The correlation coefficients for this assembly are given in Table D.19. Comparing 

to Table D.IO, a current on the left face of the assembly does show a significant change 

in the correlation coefficients for the cross sections but not a large difference for the 
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edge-to-average flux ratio coefficients. Thus, the linear gradient in the heterogeneous fuel 

cross sections is reflected in the flux and volume weighted homogenized cross sections. 

However, the linear gradient in the heterogeneous fuel cross sections does not 

significantly alter the manner that a current on the left boundary affects the 

edge-to-average flux ratios. Comparison of Tables D.IO and D.19 also shows that a 

current on the top face of the assembly produces little change in the cross section 

coefficients and edge-to-average flux ratio coefficients. This is expected since the fuel 

cross sections are constant in the top to bottom traverse. Because the assembly is 

asymmetric, a current on the right face of the node will also create a significant change 

in the cross section coefficients., These results are important because they show that 

gradual changes in the heterogeneous fuel cross sections do not strongly affect the 

edge-to-average flux ratio correlation coefficients. 

Weak Global Reactor Correlation Coefficient Dependencies 

It has been pointed out in this section that computer storage requirements for 

correlation coefficients can be larger than desired.. This is because the correlations are 

dependent on the node surface, energy group, and homogenized parameter. Finding and 

removing the weak dependencies from the set of correlation coefficients can amply reduce 

the storage requirements for the coefficients. This section shows that the thermal group 

current-to-flux ratios do not affect the fast group homogenized parameters as much as 

other effects, but this dependency is definitely not a weak dependency and the correlation 

set must include it to obtain accurate global reactor results. One dependency that is often 
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weak is the effect that a current-to-flux ratio has on a surface orthogonal to the current. 

However, as discussed, this effect is necessary when the material along a node surface 

is not uniform. Such a case is always present in BWR fuel assemblies when a cruciform 

control blade in inserted in between the BWR fuel elements. 

It was also shown that the correlation coefficients are dominated by the geometry 

and material arrangements in the fuel assembly. The material arrangement refers to types 

of materials ( fuel, water, absorber, etc. ) as opposed to specific cross sections of similar 

types of materials. This awareness provides a successful method to vastly reduce 

computer storage requirements for the coefficients and., perhaps more importantly, reduce 

the number of lattice homogenization solutions necessary to find a complete set of 

correlation coefficients. Using identical correlation coefficients for all fuel assemblies of 

similar geometries and material arrangements does not noticeably diminish the accuracy 

of the global reactor solution. However, if the reactivity of each fuel pin changes within 

the assembly as in burnup analyses, then the correlation coefficients for the homogenized 

cross sections do appreciatively change. 

4.7 Conclusions from the Two-Dimensional Analyses 

Global reactor information has been applied in this chapter to correlations to adjust 

homogenized parameters for sample two-dimensional BWR and PWR geometries. 

Reference transport theory solutions were found and presented for the two geometries for 

comparison results. Also, solutions that use widely practiced nodal analysis methods 
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(infinite lattice homogenized parameters only ) were found and comparisons were made 

between the nodal solutions and the reference transport solutions. 

It was explained in Section 4.5 how to find the correlation coefficients for the fuel 

assemblies and how the coefficients are used in conjunction with the infinite lattice 

homogenized parameters. Once the coefficients were available, they were applied to the 

global reactor problems to prove, numerically, that the method introduced in Chapter III 

to compute flux discontinuity factors does account for the nodal code flux approximation 

and uncertainties in the diffusion coefficients. Thus, correlating the edge-to-average flux 

ratios from the lattice homogenization solution allows different flux approximations and 

diffusion coefficients to produce equivalent nodal solutions ( with exception of large 

values for the diffusion coefficients ). The results from these solutions showed that 

applying the correlations reduces the maximum assembly power error and the RMS errors 

by approximately a factor of two compared to not applying correlations. 

Because adjusting the homogenized parameters is an iterative procedure, 

convergence characteristics of the method were also examined in Section 4.5. The 

convergence characteristics examined in this chapter are assumed to be independent of 

the flux and eigenvalue convergence loops. The solutions have converged when the global 

reactor information does not result in any further change to the homogenized parameters 

and, thus, the upcoming global reactor solution will not change either. Because different 

flux approximations in the nodal analysis and different diffusion coefficients produce 

identical results ( with exception of large values for the diffusion coefficients ), it may 
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at first seem advantageous to employ the simplest flux approximation and use haphazard 

diffusion coefficients, diffusion coefficients equal to one for instance. However, a 

different conclusion was found in Section 4.5. As shown in that section, employing a 

more accurate flux approximation in the nodal code will require fewer adjustments to the 

homogenized parameters to reach convergence than employing a simpler flux 

approximation. Likewise, the nodal analysis will reach convergence with fewer 

adjustments to the homogenized parameters when it uses reasonable values for the 

diffusion coefficients rather than haphazard values. However, quick convergence does not 

require the diffusion coefficients to be accurate. Values to only one decimal place are 

sufficient. 

The computer storage requirements for the correlation coefficients are criticized 

in Section 4.6. Thus, the dominating influences on die correlation coefficients were found. 

It was shown that the material arrangements in the assembly dominate the correlation 

coefficients. If one material type replaces another., then the correlation coefficients will 

drastically change. An example of this is when an absorber material replaces a location 

previously occupied by water. Negligible change in the correlation coefficients will occur 

when a material replaces another material of a similar type uniformly throughout the 

assembly. For instance, when fuel of one enrichment replaces fuel of a different 

enrichment. However, when the heterogeneous fuel cross sections have a gradient across 

the assembly, the correlation coefficients for the homogenized cross sections will show 

stronger dependency to the gradient. These cases occur when the nodal code models the 
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intra-assembly bumups, for example. Nevertheless, the gradient in the fuel cross sections 

do not appreciably alter the edge-to-average flux ratios, but, as discussed in the first 

chapter, both homogenized cross sections and flux discontinuity factors have to be 

adjusted simultaneously to improve global reactor results. 

In conclusion, correlating the homogenized parameters to account for global 

reactor effects can reduce the maximum assembly power error and the RMS errors of all 

assemblies by approximately a factor of two.. Also, using an accurate flux approximation 

in the nodal code and reasonable diffusion coefficients lessens to number of times to 

adjust the homogenized parameters to about two adjustments. Relationships between 

similar assemblies can be used to reduce the computer storage requirements for the 

correlation coefficients and reduce the number of lattice homogenization calculations 

required to find a complete set of correlation coefficients. It is imperative to employ the 

shifted circle boundary condition to find the correlation coefficients. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

5.1 Overview of the Investigation 

The goal of this thesis is to develop a feasible method for improving the accuracy 

of homogenized parameters used in nodal diffusion theory by applying global reactor 

information. The global reactor information used to improve homogenized parameters are 

the currents along node boundaries relative to the average flux of the same energy group 

within the node. An iterative method that uses correlations to adjust infinite lattice 

homogenized parameters can fulfill this objective. This approach can contain the 

adjustments to the homogenized parameters within the nodal code. Thus, nodal diffusion 

theory codes can incorporate global effects into a final solution in a similar manner as 

thermal feedback effects. 

Common nodal diffusion theory analyses use infinite lattice homogenized 

parameters without any adjustments for the global reactor information. These analyses 

have been shown to provide good solutions to global reactor problems. However, some 

analyses do account for global reactor information by using extended geometry 

calculations to find homogenized parameters and others use a strategy that iterates 

between the lattice homogenization analyses for each node and a nodal solution for the 

global reactor problem. These analyses are superior to analyses using infinite lattice 

156 



homogenized parameters only, but they are also more costly and therefore less feasible 

than the approach taken in this thesis. It was demonstrated numerically that correlations 

for the homogenized parameters are accurate and the increased cost to generate and apply 

the correlations makes the method feasible. 

Two computer codes were written to investigate methods to improve homogenized 

parameters for nodal diffusion theory codes. One code is a lattice homogenization code 

( JTC ) and the other is a nodal diffusion theory code ( NDT ). For this thesis, it is 

important that the lattice homogenization code is not based on diffusion theory. This is 

because lattice homogenization codes used for production analyses are based on transport 

theory and because appropriate boundary conditions for transport theory lattice 

homogenization are crucial to accurately correlate homogenized parameters. NDT is a 

nodal diffusion theory code that has several different flux approximations available. Both 

codes have been benchmarked and show favorable results compared to more popular 

reactor analysis codes. In the case of NDT, the simpler flux approximations show 

expected results. The simpler flux approximations converge to a solution, but the power 

profiles are not as accurate as the more complex flux approximations. 

It was demonstrated numerically that linear correlations for the homogenized 

parameters are sufficiently accurate. Correlations can easily be found that include higher 

ordered polynomials of the current-to-flux ratio and cross product terms between 

current-to-flux ratios from different energy groups or surfaces of the node. However, 

including these terms will obviously make the method to improve homogenized 
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parameters more expensive because of the large number of lattice homogenization 

calculations required to form such a set of correlations. 

In Chapter HI, it was emphasized that flux discontinuity factors should not be 

correlated as homogenized parameters, but that edge-to-average flux ratios from the 

homogenization analysis should be correlated. In the case of infinite lattice homogenized 

parameters, the two are equal and there is no need to distinguish between them. However, 

when adjusting the homogenized parameters to reflect effects of the global reactor 

solution, there are several reasons for this distinction. First, flux discontinuity factors 

cannot be accurately modeled by a linear correlation but the edge-to-average flux ratios 

from the lattice homogenization can. If the edge- to-average flux ratio from the lattice 

homogenization is known by a correlation or any other method, then the flux discontinuity 

factor can be easily found. Also, when a current is present on any surface of the node, 

the flux discontinuity factor is dependent on the flux approximation in the nodal code and 

the diffusion coefficient. The edge-to-average flux ratio from the lattice homogenization 

is completely independent of the nodal code flux approximation and the diffusion 

coefficient. Thus, correlating the edge-to-average flux ratio can allow the nodal code to 

account for the flux approximation and diffusion coefficients that it is using. Koebkes' 

postulates state that equivalence theory should preserve the lattice homogenization edge 

fluxes and average flux. They do not state that equivalence theory should preserve the 

flux discontinuity factor. 
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A new assembly boundary condition named the shifted circle boundary condition 

was introduced in this thesis. In an x-y coordinate system, this boundary condition causes 

the angular flux shape to be circular about a point to the left or right of the origin. Linear 

correlations for the edge-to-average flux ratio are accurate provided that the lattice 

homogenization code uses this boundary condition to create a current along a node 

boundary necessary to find the correlation coefficients. A numerical analysis demonstrated 

that the albedo boundary condition in transport theoiy codes is capable of creating a 

current but it does not accurately model the scalar flux profile near the node boundary. 

This causes the edge flux to be faulty and, thus, the edge-to-average flux is also faulty. 

These inaccurate values lead to errant correlation coefficients for the edge-to-average flux 

ratios. It was also demonstrated numerically that the shifted circle boundary condition 

does model the scalar flux profile near the node boundaries accurately. This results in 

finding accurate correlation coefficients for the edge-to-average flux ratios. 

In two-dimensional problems that represent small portions of a BWR and PWR 

reactor, the linear correlations for the homogenized parameters were shown to reduce the 

maximum and root mean square errors in assembly powers by a factor of two. It was 

demonstrated numerically that with the correlations, different flux approximations in the 

nodal code and different diffusion coefficients all result in identical final solutions to the 

global reactor problem. However, it was pointed out that a final solution rapidly 

converges when a more accurate flux approximation is used in the nodal code along with 
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reasonably accurate diffusion coefficients. With these conditions, practical convergence 

is reached in only two adjustments to the homogenized parameters. 

Sensitivity of the correlations to the material arrangement in the fuel assemblies 

and the heterogeneous cross sections was examined. This investigation showed that 

correlations are strongly dependent on the fuel assembly geometry and the material 

arrangement in the fuel assembly. The material arrangement refers to materials of a 

similar type being in identical locations in the fuel assembly. A numerical analysis 

showed that inserting a control blade in a BWR assembly, for instance, will greatly alter 

the correlation coefficients. The analysis also showed that altering the cross sections 

uniformly throughout the assembly does not significantly alter the correlation coefficients. 

This dependency is important because it allows correlations to be found for one assembly 

and used for all assemblies of similar geometries and material arrangements. This 

significantly reduces the cost of generating and storing the correlation coefficients and 

makes the method to incorporate global effects into the homogenized parameters more 

feasible. 

As emphasized in the thesis, employing correlations to the infinite lattice 

homogenized cross sections and the infinite lattice edge-to-average flux ratios from the 

lattice homogenization code can account for deficiencies in the nodal code flux 

approximation and ambiguities or uncertainties in the diffusion coefficients. Although 

correlations relieve apprehensions for the nodal code, it does, unfortunately, elevate 

worries for the lattice homogenization code. In particular, there are concerns about the 
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boundary condition used to create a current on a node surface and find correlation 

coefficients. The shifted circle boundary condition was developed to provide a boundary 

condition that accurately predicts the flux on the surface of a node and creates a current 

on the surface. 

5.2 Recommendations for Future Work 

The results of this thesis open the door to other research avenues in lattice 

homogenization and nodal diffusion theory. These queries are beyond the limits of the 

computer codes JTC and NDT and should be investigated using more common production 

based computer codes. 

The shifted circle boundary condition was successfully implemented in the discrete 

ordinates transport theory code JTC. However, most lattice homogenization codes use 

integral transport theory; either collision probabilities or the method of characteristics. The 

shifted circle boundary condition should also be applied to these analysis techniques. 

Unlike the analyses in this thesis, lattice homogenization codes used for production 

analysis employ an energy group structure with twenty to eighty energy groups and then 

collapse the multigroup structure to two broad groups. Further research should explore 

how to place currents in a multigroup structure and then collapse the energy group 

structure (including currents ) to two broad groups. For example, three different 

possibilities may be to i) place a current in only one fine group, ii) place an equal 

current in each fine group of a broad energy group, or iii) place a current in each fine 
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group of a broad energy group based on the flux spectrum of the fuel assembly. Although 

reason warrants the latter example to be the obvious choice, there may be better choices. 

Burnup dependencies of the correlations should also require a more thorough 

examination. Research in this area should concentrate on the intra-nodal burnup shape of 

the fuel and burnup of burnable absorber pins such as Gadolinium. Although a segment 

of the thesis touched on an intra-nodal burnup shape, it did not test the correlations to a 

reference solution. Additionally, the depletion of a strong absorber material in the fuel 

was not examined in the thesis. 

Finally, the method should be applied and benchmarked against experimental data 

for a full core analysis. These studies should include application of the method to the 

baffle/reflector regions in the reactor. Also, studies using a three-dimensional model 

should be performed. 
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APPENDIX A 

JTG BENCHMARK RESULTS 
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Figure A.l. Geometry Description of the BWR Rod Bundle 
Benchmark Problem. 
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Table A.l. Two-Group Material Cross Sections for the BWR Rod Bundle Benchmark 
Problem, cm'1 

Material Group Sa Sf vS f S t S w 2 

1 1 8.983e-03 2.281e-03 5.925e-03 2.531e-01 1.069e-02 

2 5.892e-02 4.038e-02 9.817e-02 5.732e-01 

2 1 8.726e-03 2.003e-03 5.242e-03 2.536e-01 1.095e-02 

2 5.174e-02 3.385e-02 8.228e-02 5.767e-01 

3 1 8.587e-03 1.830e-03 4.820e-03 2.535e-01 1.112e-02 

2 4.717e-02 2.962e-02 7.200e-02 5.797e-01 

4 1 8.480e-03 1.632e-03 4.337e-03 2533e-01 1.113e-02 

2 4.140e-02 2.428e-02 5.900e-02 5.837e-01 

5 1 9.593e-03 2.155e-03 5.605e-03 2.506e-01 1.016e-02 

2 1.626e-01 9.968e-03 2.424e-02 5.853e-01 

Assembly 1 1.043e-03 0 0 2.172e-01 9.095e-03 

Wall 2 4.394e-03 0 0 4.748e-01 

Water 1 1.983e-04 0 0 2.476e-01 3.682e-02 
G a P 2 7.796e-03 0 0 1.123e+00 



Table A.2. Two-Group Fluxes from JTC using 4x4 Mesh Spacing and 58 Angular Quadrature. 
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Table A.3. Comparison of JTC to the Reference Solution ( DOT-III ) and the 
TWOTRAN-II Code. All Solutions used a 4x4 Mesh Spacing and Ss Angular 
Quadrature. 

Flux ratio3 

k-eff maximum minimum 

DOT-m 1.08714 - -

TWOTRAN-n 1.08727 1.007 0.980 

JTC 1.08590 1.012 0.977 

The flux ratio is the flux from JTC or T'WOTRAN divided by DOT. 
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NDT BENCHMARK RESULTS 
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Figure B.l. Radial Geometry Description of the 3-D IAEA 
Benchmark Problem.. Material 3* is a Partially Inserted Control 
Rod. NDT uses a Zero Scalar Flux Boundary Condition rather 

than No Incoming Partial Current. 
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Table B.l. Two-Group Material Cross Sections for the 3-D IAEA 
Benchmark Problem, cm"1 

Material Group D (cm) Ea vEf SN 2 

1 1 1.500e+00 1.000e-02 0 2.000e-02 

2 4.000e-01 8.000e-02 1.350e-Oi 

o 
£* 

1 i.500e+00 l.OOOe-02 0 2.000e-02 

2 4.000e-01 8.500e-02 1.350e-01 

3 1 1,500e+00 1.000e-02 0 2.000e-02 

2 4.000e-01 1.300e-01 l,350e-01 

A i 2.000e+00 0 n 
Vf 

4.000e-02 

2 3.000e-01 1.000e-02 0 

5 1 2.000e+00 0 0 4.000e-02 

2 3.000e-01 5.500e-02 0 



Table B.2. Assembly Power Densities for the 3-D IAEA Benchmark Problem. 

0.597 

Eigenvalue 
1.02903 

0.599 
0.598 
0.516 
0.461 
0.585 

VENTURE 
Eigenvalue 
1.02903 0.476 0.700 0.611 

QUANDRY 1.02902 0.475 0.705 0.615 
IQSBOX 1.02911 0.474 0.703 0.611 
NDT F.D. 1.03158 0.364 0.738 0.504 

NDT Quadratic 1.02822 0.447 0.650 0.483 
NDT nuartic 1.02889 0.472 0.697 0.601 1.02889 

J.J /» u.y/z 0.923 0.866 
1.178 0.972 0.924 0.869 
1 1 7 0 rvoT-> 

\j.y 1 4* 
0.926 0.866 

1.237 1.006 0.921 0.786 
1.241 1.011 0.888 0.733 
1.185 0.976 0.919 0.855 

1.368 1.311 1.181 1.089 1.000 0:711 
1366 1.311 1J80 1.088 0.999 6.711 
1.366 1.311 1.181 1.087 0.995 0.707 
1A09 1364 1:188 1.084 1.025 6.577 , 
1.466 1.396 1.239 1.072 0.922 r\ es^ 

U.JOJ 

1378 1.322 1.185 1.087 0.990 6.696 
1.397 1.432 1.291 1.072 1.055 0.976 0.757 
1.392 1.429 1.288 1.071 1.053 0.973 0.754 
1.398 1.431 1.291 1.072 1.054 0.974 0.752 
1.495 1.510 1.371 1.098 1.069 0.943 0.686 
1.546 1.567 1.395 1.137 1.055 0.918 0.653 
1.408 1.443 . 1.299 1.080 1.053 0.966 0.741 

0.729 1.281 1.422 1.193 0.610 0.953 0.959 0.777 
0.731 1.276 1.416 1.190 0.611 0.952 0.957 0.772 
0.726 1.282 1.423 1.194 0.608 0.953 0.958 0.770 
0.658 1.387 1.494 1.302 0.507 0.997 0.928 0.706 
0.772 1.443 1.588 1.318 0.610 0.966 0.921 0.687 
0.735 1.297 1.433 1.203 0.611 0.956 0.952 0.762 



APPENDIX C 

ERRORS IN THE ONE-DIMENSIONAL ANALYSIS 

Section C.l. Coupling Errors 

Section C.2. Boundary Condition Errors 

Section C.3. Polynomial Fitting Coefficients and Errors 
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Section C.l. Coupling Errors 
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Table C.l. Errors in the Reconstructed Homogenized Parameters due to Energy Group 
Coupling. 

Group 

1 

2 

Group 

1 

2 

BWR 

Sa vEf 

-1.29894e-05 8.08371e-06 

-1.07541e-04 4.42317e-05 

Flux Discontinuity Factor 

Left Right 

-1.80422e-Q3 2.55972e-04 

-2.73056e-02 -6.51913e-03 

2 5 1-2 

1.93972e-05 

Edge-to-Average Flux Ratio 

Left Right 

-8.27879e-04 9.97523e-04 

-2.88513e-03 2.95798e-03 

PWR 

Group 2 a vS f 2 s i - 2 

1 -1.87684e-05 -1.01935e-06 3.2428 le-05 

2 -1.38040e-04 -2.13392e-05 

Group 

1 

2 

Flux Discontinuity Factor 

Left Right 

•1.76736e-03 1.26516e-03 

•1.50626e-02 7.56252e-03 

Edge-to-Average Flux Ratio 

Left Right 

-1.01760e-03 1.14814e-03 

-2.79936e-03 2.66948e-03 
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Table C.2. Errors in the Reconstructed Homogenized Parameters due to Node Face 
Coupling. 

Group 

1 

2 

Group 

1 

2 

BWR 

Sa vS f 

-2.01164e-05 -4.00817e-05 

-3.35163e-05 -1.02004e-04 

Flux Discontinuity Factor 

Left Right; 

-1.69290e-03 -4.33537e-03 

-7.13450e-03 -7.7043 le-03 

1.67031e-05 

Edge-to-Average Flux Ratio 

Left Right 

8.57928e-04 -5.15076e-04 

9.23068e-04 -1.33473e-04 

Group 

1 

2 

Group 

1 

2 

PWR 

Sa vEf 

2.0898 8e-05 3.93179e-06 

2.99248e-05 6.40176e-06 

Flux Discontinuity Factor 

Left Right 

-7.24879e-04 -4.11275e-03 

-1.34768e-02 -1.33253e-02 

-3.49225e-05 

Edge-to-Average Flux Ratio 

Left Right 

1.33145e-03 -1.08989e-03 

6.55796e-04 -3.84721e-04 
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Section C.2 Boundary Condition Errors 
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Table C.3. Errors in the Reconstructed Homogenized Parameters due to using Albedo 
Boundary Conditions to Create the Reference Currents. 

BWR 

Group 2 . v2 f 2 S 1-2 

1 3.14735e-04 3.52483e-04 -3.2598 le-04 

2 1.527K)e-04 3.99891e-04 

Edge-to-Average Flux Ratio 

Group Left Right 

1 -2.37042e-02 l.58470e-02 

2 -1.30799e-02 3.90914e-03 

PWR 

Group Sa v2 f S s l , 2 

1 -1.93771e-05 -2.81050e-05 2.36974e-05 

2 -4.6335 le-0.5 -2.98749e-05 

Edge-to-Average Flmc Ratio 

Group Left Right 

1 -1.78681e-02 1.30994e-02 

2 -1.47031e-02 1.06456e-03 
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Table C.4. Errors in the Reconstructed Homogenized Parameters due to using Shifted 
Circle Boundary Conditions to Create the Reference Currents. 

BWR 

Group Sa vS f 2 , ^ 

1 2.33350e-05 2.47564e-05 -2.47853e-05 

2 1.74241e-05 1.62484e-05 

Edge-to-Average Flux Ratio 

Group Left Right 

1 1.26522e-04 -1.05072e-03 

2 3.24824e-04 -5.34566e-04 

PWR 

Group Ila vS f S i l - 2 

1 -4.36238e-06 -l.23779e-05 3.11808e-06 

2 1.83410e-05 -7.11306e-07 

Edge-to-Average Flux Ratio 

Group Left Right 

1 7.03570e-04 -5.12517e-03 

2 1.98285e-04 4.2553 le-03 
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Section C.3 Polynomial Fitting Coefficients and Errors 
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Table C.5 Polynomial Coefficients Corresponding to the Group 1 Current-to-Flux Ratio 
on the Left Boundary of the BWR Geometry. 

flj JI2 &3 &4 

2., -0.09445 -0.06274 0.09178 -0.07591 

s a 2 0.04681 -0.16036 0.17911 -0.06233 

vSfl -0.16755 0.02701 -0.00269 -0.02464 

vS f 2 -0.14129 0.04588 0.01793 -0.05978 

2 5 u2 0.08128 0.09057 -0.12304 0.10403 

* • , / * " • ! 
5.90235 -4.24340 4.29856 -2.20409 

(J)V(j)aVe
2 4.30295 -4.42099 3.44129 0.28235 

W^*! -2.37479 3.51266 -3.89479 2.39307 

<t>V<l>aVC2 -2.30869 3.15384 -2.86095 0.27543 
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Table C.6 Polynomial Coefficients Corresponding to the Group 1 Current-to-Flux Ratio 
on the Right Boundary of the BWR Geometry. 

3j Jlj 83 84 

Sal 0.20213 0.11055 0.16516 0.31283 

s a 2 0.19948 0.27124 0.50113 1.02689 

v S M 0.16953 0.03094 0.01915 0.02800 

v S f 2 0.12596 0.07179 0.07173 0.11955 

S s 1,2 -0.22407 -0.13886 -0.21451 -0.41611 

<f>~l/<f>aVei 2.17374 3.62489 6.64266 13.10330 

(j>V(j)ave
2 2.52156 4.85309 9.95397 21.23110 

•V^i -5.03891 -3.73229 -6.32901 -12.35860 

4>V<f>ave2 -3.06169 -4.43969 -8.48237 -17.68940 
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Table C.7 Polynomial Coefficients Corresponding to the Group 2 Current-to-Flux Ratio 
on the Left Boundary of the BWR Geometry. 

j * l *h. <*3 a4 

Z. i 0.00129 -0.00207 -0.00107 0.01073 

S a 2 -0.11769 -0.01303 -0.00148 -0.01484 

vZ,i -0.01068 -0.00351 -0.00123 -0.00560 

vS f 2 -0.27239 0.00773 0.00299 -0.07771 

2 S U2 -0.00454 0.00174 0.00072 -0.00717 

^ V ^ l 0.63201 0.09883 0.01726 0.58075 

<t>V4>ave
2 5.23383 -0.45630 -0.07374 2.63801 

<J>v<J>avel -0.43038 -0.04127 0.00077 -0.48436 

4>V4>a v ea -1.26198 0.29846 0.04384 -1.05128 
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Table C.8 Polynomial Coefficients Corresponding to the Group 2 Current-to-Flux Ratio 
on the Right Boundary of the BWR Geometry. 

3j II2 EI3 84 

S . i 0.01999 -0.00466 0.00146 0.00537 

s a 2 0.22511 0.02296 -0.00067 -0.02152 

v 2 f i 0.01102 -0.00388 0.00123 -0.00560 

v2 f 2 0.26752 0.00623 -0.00060 -0.05380 

2 S U2 -0.02369 0.00506 -0.00143 0.00000 

^ V ^ l 0.41926 -0.03767 0.00361 0.24780 

<t>y<t>avea 1.38968 0.40051 -0.01051 0.43403 

<t>+i/<t>avei -0.53582 0.08913 -0.02285 -0.19066 

(J)+
2/( |)aVe2 -4.21392 -0.36894 0.00105 0.33633 
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Table C.9 Polynomial Coefficients Corresponding to the Group 1 Current-to-Flux Ratio 
on the Left Boundary of the P\VR Geometry. 

3 j it} ^3 ^4 

S . i 0.05994 -0.08535 0.10092 -0.08744 

2 a 2 0.13923 -0.18099 0.16243 -0.05824 

vS f l 0.01603 -0.00414 0.00049 0.00291 

vS f2 0.02962 -0.02691 0.02090 -0.00950 

^ s 1-2 -0.09855 0.14701 -0.17521 0.14497 

4>V4>avei 5.57736 -5.41940 6.09532 -5.20818 

4>V4>a v e2 4.03685 -3.99446 3.23679 -0.79938 

<J>V<l>avei -2.67950 4.39067 -5.47837 4.82635 

4>V4>ave
2 -2.16470 2.92457 -2.72999 0.99927 
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Table CIO Polynomial Coefficients Corresponding to the Group 1 Current-to-Flux Ratio 
on the Right Boundary of the PWR Geometry. 

&1 ^ 2 &3 <*4 

S a l 0.03589 0.07538 0.14478 0.28468 

s a 2 0.12285 0.22432 0.46659 0.97719 

vS f i -0.01670 -0.00437 -0.00223 -0.00097 

vS f 2 0.00757 0.02789 0.06127 0.12824 

S s U2 -0.06830 -0.13243 -0.25142 -0.509467 

<J>"l/<l>aVei 2.46218 4.47561 8.66217 17.35940 

<J>V<l>aVe2 2.41831 4.71250 10.02440 21.63910 

<J>+l/<l>aVei -4.68053 -4.65013 -8.18431 -16.16090 

<J>V<l>aVe2 -2.77264 -4.04205 -8.14651 -17.36620 
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Table C.ll Polynomial Coefficients Corresponding to the Group 2 Current-to-Flux Ratio 
on the Left Boundary of the PWR Geometry. 

ai *2 a3 a4 

S a l 0.01110 -0.00186 0.00047 -0.00474 

s a 2 0.04226 -0.02014 0.00194 -0.01941 

vZ,i 0.00234 0.00012 0.00000 0.00000 

v 2 f 2 0.03450 -0.00351 0.00095 -0.01900 

S s u2 -0.01847 0.00336 -0.00083 0.00000 

^ " l ^ ^ l 0.86980 -0.10045 0.03489 -0.10709 

(J)V(J)aVe
2 5.76812 -0.50424 0.13000 -1.81824 

<!>y<t>avei -0.50399 0.10646 -0.02269 -0.01260 

(j)+
2/(j)

ave
2 -1.03322 0.31865 -0.06066 0.11062 

! 
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Table C.12 Polynomial Coefficients Corresponding to the Group 2 Current-to-Flux Ratio 
on the Right Boundary of the PWR Geometry. 

j * l 'h <*3 <*4 

S . i 0.00758 0.00187 0.00034 -0.00610 

s a 2 0.05376 0.02165 0.00518 -0.03883 

v S f l -0.00243 0.00023 0.00000 0.00194 

vS f 2 -0.02309 0.00211 0.00000 0.00950 

2 S 1-2 -0.01405 -0.00314 -0.00041 0.012426 

<l>'l/<l>aVei 0.48322 0.10409 0.01755 -0.24735 

<i>y<i>ave2 1.14604 0.43717 0.10064 -0.57183 

4>\WV\ -0.73311 -0.06784 -0.01859 0.36864 

<l>V<l>aVC2 -4.57186 -0.43706 -0.08595 2.46048 
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Table C.13. Errors in Homogenized Parameters found by Reconstructing all terms of the 
Fourth Order Power Series. 

BWR 

Group 

1 

2 

Group 

1 

2 

2. vS f 

-1.16664e-05 -1.38155e-06 

-8.85129e-05 -1.71746e-05 

Edge-to-Average Flux Ratio 

Left Right 

-1.52900*04 -2.41347e-04 

-1.29092e-03 1.63480e-03 

2 S 1,2 

1.37285e-05 

Group 

1 

2 

Group 

1 

2 

PWR 

Sa v2 f 

-1.41551e-05 -9.60762e-06 

-7.51781e-05 -1.50.584e-05 

Edge-to-Average Flux Ratio 

Left Right 

2.8543 le-04 -4.12472e-03 

-1.61748e-03 6.21004e-03 

2 s i , 2 

1.90031e-05 
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Table C.14. Errors in Homogenized Parameters found by Reconstructing the Quadratic 
Terms of the Power Series. 

BWR 

Group Ea vS f Es u 2 

1 -7.54204e-06 -1.38949e-06 8.23123e-06 

2 -7.92745e-05 -l.61646e-05 

Edge-to-Average Flax Ratio 

Group Left Right 

1 -6.63628e-07 -4.49072e-04 

2 -1.14587e-03 1.45896e-03 

PWR 

Group S, vS f 2 s l , 2 

1 -1.17642e-05 -9.61671e-06 1.48224e-05 

2 -6.95559e-05 -1.43210e-05 

Edge-to-Average Flux Raitio 

Group Left Right 

1 4.07032e-04 -4.28176e-03 

2 -1.51952e-03 6.10596e-03 
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Table C.15. Errors in Homogenized Parameters found by Reconstructing the Linear 
Terms of the Power Series. 

BWR 

Group Sa vEf S.,_2 

1 -3.84623e-05 3.69566e-05 5.95128e-05 

2 -1.63229e-04 ' 5.84802e-05 

EdgCrto-Average Flux Ratio 

Group Left Right 

1 -2.67705e-03 2.57943e-03 

2 -3.70425e-03 3.72903e-03 

PWR 

Group Sa vS f 2 s l , 2 

1 -3.:U143e-05 -1.35146e-05 4.74132e-05 

2 -8.76080e-05 -1.93027e-05 

Edge-to-Average Flux Ratio 

Group Left Right 

1 -7.28253e-04 -3.43684e-03 

2 -1.93870e-03 6.23906e-03 
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Table D.l. Infinite Lattice Homogenized Parameters for the BWR Fuel Assembly A. 
( The most reactive BWR assembly.. ) 

BWR without control blade inserted 

Group 

1 

2 

D (cm) Sa (cm"1) vS f (cm"1) 

1.425735e+00 7.785936e-03 5.419602e-03 

3.906145e-01 7.249S>43e-02 9.348392e-02 

FDF or Edge-to-Average Flux Ratio 

Group Left 

1 0.993915 

2 1.530324 

S s U2 (cm"1) 

1.842649e-02 

Group Left Right Top Bottom 

1 0.963055 0.863334 0.863334 0.963055 

2 1.265587 1.510890 1.510891 1.265588 

BWR with control blade inserted 

Group D (cm) Sa (cm"1) vS f (cm"1) S s t.2 (cm"1) 

1 1.423138e+00 8.067234e-03 5.429393e-03 1.763250e-02 

2 4.036315e-01 8.313203e-02 1.006144e-01 

FDF or Edge-to-Average Flux Ratio 

Right Top Bottom 

0.843372 0.843372 0.993915 

0.901964 0.901963 1.530323 
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Table D.2. Infinite Lattice Homogenized Parameters for the BWR Fuel Assembly B. 

BWR without control blade inserted 

Group D (cm) Sa (cm"1) vS f (cm'1) E,w(cm-1) 

1 1.4245280*00 7.529099e-03 4.92336 le-03 1.862690e-02 

2 3.898094e-01 6.755748e-02 8.265275e-02 

FDF or Edge-to- Average Flux Ratio 

Group Left Right Top Bottom 

1 0.955802 0.871155 0.871155 0.955802 

2 1.243491 ' 1.450460 1.450458 1.243490 

BWR with control blade inserted 

Group D (cm) 2 a (cm"1) v2f(cm'1) 2s l.2(cm'1) 

1 1.421805e+00 7.813358e-03 4.930959e-03 1.782263e-02 

2 4.020903e-01 7.709636e-02 8.810635e-02 

Group Left 

1 0.988646 

2 1.496791 

FDF or Edge-to-Average Flux Ratio 

Right Top Bottom 

0.848375 0.848375 0.988646 

0.863472 0.863472 1.496793 
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Table D.3. Infinite Lattice HbiriDgenized Parameters for the BWR Fuel Assembly C. 
( The least reactive BWR assembly. ) 

Group D (cm) 

1 1.423612e+00 

2 3.880204e-0I 

Group 

1 

2 

BWR without control blade inserted 

2 , (cm1) vSf(cm'1) 

7.243206e-03 4.36858 le-03 

6.140771e-02 6.923273e-02 

FDF or Edge-to-Average Flux Ratio 

S s U2 (cm"1) 

1.883679e-02 

Group Left Right Top Bottom 

1 0.955649 0.868517 0.868517 0.955649 

2 1.214204 1.385712 1.385713 1.214205 

BWR with control blade inserted 

Group D (cm) Sa (cm"1) vS f (cm"1) 2S U2 (cm"1) 

1 1.420907e+00 7.525873e-03 4.375117e-03 1.803560e-02 

2 3.996334e-0l 7.013191e-02 7.360122e-02 

FDF or Edge-to-Average Flux Ratio 

Left Right Top Bottom 

0.988621 0.845818 0.845818 0.988621 

1.458176 0.822314 0.822314 1.458178 
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Table D.4. Infinite Lattice Homogenized Parameters for the PWR Fuel Assembly D. (The 
most reactive PWR assembly. ) 

Group 

1 

2 

1.364194e+00 

4.232055e-01 

Group Left 

1 1.010410 

2 0.913214 

Group D(cm) 

1 1.363953e+00 

2 4.303007e-0l 

Group Left 

1 1.015190 

2 0.982730 

PWR without control rod cluster inserted 

D (cm) S a (cm"1) vS f (cm"1) S s ^ (cm"1) 

9.326510e-03 6.67574 le-03 1.710559e-02 

9.302914e-02 1.341296e-01 

FDF or Edge-to-Average Flux Ratio 

Right Top Bottom 

1.010410 1.010410 1.010410 

0.913214 0.913214 0.913214 

PWR with control rod cluster inserted 

S.Ccm-1) vS^cm"1) Xs^2(cml) 

9.628238e-03 6.675666e-03 1.635417e-02 

1.019187e-01 1.359635e-01 

FDF or Edge-to-Average Flux Ratio 

Right Top Bottom 

1.015190 1.015190 1.015190 

0.982730 0.982730 0.982730 
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Table D.5. Infinite Lattice Homogenized Parameters for the PWR Fuel Assembly E. 

PWR without control rod cluster inserted 

Group D(cm) Sa (cm"1) vS f (cm"1) S s ,_2 (cm"1) 

1 1.362365e+00 8.98966()e-03 6.018026e-03 1.735948e-02 

2 4.198997e-01 8.418949e-02 1.148353e-01 

Group Left 

1 1.011197 

2 0.921738 

FDF or Edge-to-Average Flux Ratio 

Right Top Bottom 

1.011197 1.011197 1.011197 

0.921738 0.921738 0.921738 
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Table D.6. Infinite Lattice Homogenized Parameters for the PWR Fuel Assembly F. (The 
least reactive PWR assembly. ) 

PWR without control rod cluster inserted 

Group D (cm) 2 a (crrf1) v2 f (cm"1) S5 1J2 (cm"1) 

1 1.361445e+00 8.635555e-03 5.336659e-03 1.762240e-02 

2 4.156903e-01 7.500.172e-02 9.483 869e-02 

FDF or Edge-to-Average Flux Ratio 

Group Left Right Top Bottom 

1 1.012120 1.012120 1.012120 1.012120 

2 0.930995 0.930995 0.930995 0.930995 
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Section D.2. Correlation Coefficients 
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Table D.7. Correlation Coefficients for the BWR Fuel Assembly A without the Control 
Blade Inserted. 

J/(J)ave Effecting the Homogenized Parameter 

( Boundary and Energy Group ) 

Left 1 Left 2 Top 1 Top 2 

Effected cross section 

S . i -1.08757e-01 8.55787e-04 -2.97352e-01 -2.37569e-02 

2 a 2 8.42863e-03 -8.83636e-02 -2.20147e-01 -2.67252e-01 

vS f l -1.16166e-01 3.26010e-03 -3.55861e-01 -2.97093e-02 

vS f2 3.66247e-02 -1.19639e-01 -3.88471e-01 -4.71800e-01 

2.1-a 2.9373 8e-02 -8.72185e-03 2.28002e-01 1.88116e-02 

Effected Ed£ ;e-to-Average Flux Ratio ( Boundary and Energy Group ) 

Left 1 4.80559e+00 7.14579e-01 9,37352e-02 1.12721e-02 

Left 2 3.11744e+00 5.59555e>00 -1.43426e-01 -1.73562e-01 

Right 1 -1.98108e+O0 -5.12.519e-01 3.09848e-01 -2.29484e-02 

Right 2 -1.87836e+00 -1.42732e+00 2.31551e-02 -2.69872e-01 

Top 1 3.63936e-01 1.36465e-02 5.85365e+00 5.89987e-01 

Top 2 1.882-19e-01 -1.74023e-01 3.62447e+00 5.27790e+00 

Bottom 1 6.86386e-02 -1.10078e-02 -2.40292e+00 -4.53316e-01 

Bottom 2 -2.54366e-02 -1.07328e-01 -2.70685e+00 -1.63738e+00 
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Table D.8. Correlation Coefficients for the BWR Fuel Assembly A with the Control Blade 
Inserted. 

J/(f>ave Effecting the Homogenized Parameter 
( Boundary and Energy Group ) 

Left 1 Left 2 Top 1 Top 2 

Effected cross section 

s a l -1.55604e-01 -1.08532e-02 -1.71059e-01 -7.31090e-03 

za 2 -1.67860e-01 -2.25186e-01 9.63735e-02 9.58112e-02 

v 2 f l -1.30936e-01 -7.18495e-04 -3.55661e-01 -1.73806e-02 

vS f 2 -8.07943e-02 -2.0061 le-01 -2.13790e-01 -2.82532e-01 

2 . 1-2 9.22175e-02 5.92557e-03 8.62978e-02 3.11844e-03 

Effected Edge-to-Average Flux Ratio ( Boundary and Ene rgy Group ) 

Left 1 4.53430e+00 5.84044e-01 -1.16961e-02 4.66340e-02 

Left 2 2.69726e+00 4.41479e+00 1.35414e-01 9.81317e-02 

Right 1 -1.88690e+00 -4.27988e-01 4.78463e-01 -4.55870e-02 

Right 2 -2.06945e+00 -1.39982e+00 -3.70529e-01 -3.3442 le-01 

Top 1 5.54477e-01 5.17565e-02 5.73997e+00 3.70218e-01 

Top 2 1.01009e+00 3.98560e-01 3.64876e+00 5.37215e+00 

Bottom 1 -9.52913e-02 -4.65017e-02 -2.13367e+00 -2.67344e-01 

Bottom 2 -3.69942e-01 -3.18656e-01 -1.97798e+00 -9.2423 le-01 
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Table D.9. Correlation Coefficients for the BWR Fuel Assembly B without the Control 
Blade Inserted. 

J/4>ave Effecting the Homogenized Parameter 

( Boundary and Energy Group ) 

Left 1 Left 2 Top 1 Top 2 

Effected cross section 

S a l -1.10109e-01 1.00671e-03 -2.75749e-01 -2.46229e-02 

2 a 2 -9.30016e-03 -1.01621 e-01 -1.49686e-01 -2.26036e-01 

vE M -1.26860e-01 1.05915e-03 -3.16216e-01 -2.82279e-02 

vS f 2 8.28639e-03 -1.45865e-01 -2.81021e-01 -4.24078e-01 

E„ 1-2 2.6754 le-02 -9.63754e-03 2.08 841 e-01 1.97294e-02 

Effected Edge-to-Average Flux Ratio ( Boundary and Energy Group ) 

Left 1 4.85963e+00 7.55514e-01 1.03818e-01 -6.22768e-04 

Left 2 3.06499e+00 5.81576e+00 -8.05305e-02 -1.47861 e-01 

Right 1 -1.99450e+00 -5.43909e-01 3.04998e-01 -3.70688e-03 

Right 2 -1.89521e+00 -1.52806e+00 1.78834e-02 -2.55071e-01 

Top 1 3.12959e-01 -1.83499e-03 5.43237e+00 6.19646e-01 

Top 2 1.60379e-01 -1.81465e-01 3.13729e+00 5.34459e+00 

Bottom 1 1.06476e-01 -2.80237e-04 -2.07036e+00 -4.79029e-01 

Bottom 2 -8.21574e-03 -1.03279e-01 -2.20756e+00 -1.60520e+00 
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Table D.IO. Correlation Coefficients for the BWR Fuel Assembly B with the Control 
Blade Inserted. 

J/<j)ave Effecting the Homogenized Parameter 

( Boundary and Energy Group ) 

Left 1 Left 2 Top 1 Top 2 

Effected cross section 

s a l -1.59652e-01 -1.21782e-02 -1.58381e-01 -6.66829e-03 

2 a 2 -1.77786e-01 -2.40452e-01 1.40663e-01 1.34091e-01 

v S f l -1.40136e-0.l -2.52070e-03 -3.37866e-01 -1.65250e-02 

vS f 2 -9.48347e-02 -2.1953le-01 -1.71181e-01 -2.70480e-01 

2 . H 2 9.11702e-02 6.31049e-03 7.92786e-02 2.73571e-03 

Effected Edge-to-Average Flux Ratio ( Boundary and Energy Group ) 

Left 1 4.56772e+00 6.18300e-01 -2.08520e-03 4.24002e-02 

Left 2 2.64683e+00 4.60821e+00 1.80528e-01 1.21772e-01 

Right 1 -1.89412e+00 -4.55605e-01 4.76336e-01 -3.69565e-02 

Right 2 -2.06427e+0() -1.4941 le+GO -4.19471e-01 -3.46080e-01 

Top 1 5.17903e-01 4.40518e-02 5.95336e+00 3.86650e-01 

Top 2 9.90963e-01 4.39334e-01 3.83413e+00 5.68549e+00 

Bottom 1 -6.93890e-02 -4.23893e-02 -2.36089e+00 -2.82463e-01 

Bottom 2 -3.53142e-01 -3.27053e-01 -2.10750e+00 -9.71102e-01 
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Table D.ll. Correlation Coefficients for the BWR Fuel Assembly C without the Control 
Blade Inserted. 

J/(j>ave Effecting the Homogenized Parameter 

( Boundary and Energy Group ) 

Left 1 Left 2 Top 1 Top 2 

Effected cross section 

2 . i -1.10955e-01 1.31497e-03 -2.83504e-01 -2.57649e-02 

2 a 2 -1.12466e-02 -1.0075 le-01 -1.38513e-01 -2.17977e-01 

v 2 f l -1.28597e-01 1.41951e-03 -3.26986e-01 -2.97000e-02 

v2 £ 2 6.36280e-03 -1.50975e-01 -2.86224e-01 -4.47727e-01 

2 5 l - 2 2.60508e-02 -1.02219e-02 2.11201e-01 2.03528e-02 

Effected Edge-to-Average Flux Ratio ( Boundary and Energy Group ) 

Left 1 4.84597e+00 8.00628e-01 9.77686e-02 -9.32130e-04 

Left 2 2.96433e+00 6.10437e+00 -8.37793e-02 -1.46023e-01 

Right 1 -1.97048e+00 -5.81445e-01 3.21763e-01 -3.17555e-03 

Right 2 -1.86268e+00 -1.64542e+00 3.90988e-02 -2.51646e-01 

Top 1 3.22176e-01 -1.19132e-03 5.72395e+00 6.63063e-01 

Top 2 1.61662e-()l -1.78437e-01 3.42597e+00 5.88990e+00 

Bottom 1 1.05988e-01 -6.30980e-04 -2.32255e+00 -5.17160e-01 

Bottom 2 -1.17109e-02 -1.02089e-01 -2.4662 le+00 -1.78015e+00 
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Table D.12. Correlation Coefficients for the BWR Fuel Assembly C with the Control 
Blade Inserted. 

J/<f>avc Effecting the Homogenized Parameter 
( Boundary and Energy Group ) 

Left 1 Left 2 Top 1 Top 2 

Effected cross section 

s a l -1.63817e-01 -1.28786e-02 -1.50316e-01 -6.51104e-03 

s a 2 -1.91541e-01 -2.52390e-01 1.47852e-01 1.70663e-01 

vE£1 -1.39412e-01 -2.18640e-03 -3.28342e-01 -1.71949e-02 

vE f 2 -9.26842e-02 -2.27182e-01 -1.54664e-01 -2.67946e-01 

^ s 1-2 9.02151e-02 6.39879e-03 7.41560e-02 2.60058e-03 

Effected Edge-to-Average Flux Ratio ( Boundary and Energy Group ) 

Left 1 4.80964e+00 6.51184e-01 -8.50719e-03 4.47398e-02 

Left 2 2.83359e+()0 4.8808Qe+00 1.57645e-01 1.36598e-01 

Right 1 -2.11226e+00 -4.86633e-01 4.85361e-01 -3.88936e-02 

Right 2 -2.31235e+00 -1.6^W09e+00 -3.43236e-01 -3.42193e-01 

Top 1 5.70108e-01 4.84446e-02 5.67083e+00 4.05644e-01 

Top 2 1.09834e+00 5.09118e-01 3.51564e+00 5.88516e+00 

Bottom 1 -1.07661e-01 -4.63285e-02 -2.10313e+00 -2.96692e-01 

Bottom 2 -4.04043e-01 -3.46350e-01 -1.85592e+00 -9.88262e-01 
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Table D.13. Correlation Coefficients for the PWR Fuel Assembly D without the Control 
Rod Cluster Inserted. 

J/(J)llve Effecting the Homogenized Parameter 

( Boundary and Energy Group ) 

Left 1 Left 2 

Effected cross section 

2 a l 1.95973e-02 3.50736e-03 

E a 2 1.02145e-02 2.35306e-02 

v E n 2.20l65e-02 3.94226e-03 

vS f 2 1.58419e-02 3.65152e-02 

S s U 2 -1.96876e-02 -3.51366e-03 

Effected Edge-to-Average Flux Ratio ( Boundary and Energy Group ) 

Left 1 6.81531e+00 1.35069e+00 

Left 2 4.9346le+00 6.31864e+00 

Right 1 -3.22142e+00 -7.90438e-01 

Right 2 -3.0229le+00 -1.20513e+00 

Top 1 -1.36733e-02 -1.13905e-03 

Top 2 8.35435e-03 3.82427e-02 

Bottom 1 -1.35948e-02 -9.11243e-04 

Bottom 2 8.47373e-03 3.85116e-02 
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Table D.14. Correlation Coefficients for the PWR Fuel Assembly D with the Control Rod 
Cluster Inserted. 

J/(J)ave Effecting the Homogenized Parameter 

( Boundary and Energy Group ) 

Left 1 Left 2 

2 . i 

S a 2 

vEfi 

v 2 f 2 

^ s l v z 

Effected cross section 

1.35801e-02 

2.00956e-03 

2.15350e-02 

1.5897Qe-02 

-1.29299e-02 

2.31633e-03 

-4.81990e-05 

3.64252e-03 

3.15991e-02 

-2.20775e-03 

Effected Edge-to-Average Flux Ratio ( Boundary and Energy Group ) 

Left 1 

Left 2 

Right 1 

Right 2 

Top 1 

Top 2 

Bottom 1 

Bottom 2 

6.86038e+00 

5.07806e+OG> 

-3.29699e+00 

-3.12397e+00 

-2.09688e-02 

2.13577e-02 

-2.09688e-02 

2.13577e-02 

1.24913e+00 

5.83164e+00 

-7.323 80e-01 

-1.13688e+00 

1.76619e-03 

2.543 84e-02 

1.76619e-03 

2.543 84e-02 
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Table D.15. Correlation Coefficients for the PWR Fuel Assembly E without the Control 
Rod Cluster Inserted. 

J/<j)ave Effecting the Homogenized Parameter 

( Boundary and Energy Group ) 

Left 1 Left 2 

S . i 

2 a 2 

vE f l 

vS f 2 

Z . i * 

Effected cross section 

1.94006e-02 

9.16032e-03 

2.18969e-02 

1.50999e-02 

-1.89775e-02 

3.74954e-03 

2.30376e-02 

4.22842e-03 

3.79686e-02 

-3.66032e-03 

Effected Edge-to-Average Flux Ratio ( Boundary and Energy Group ) 

Left 1 

Left 2 

Right 1 

Right 2 

Top 1 

Top 2 

Bottom 1 

Bottom 2 

6.80452e+00 

4.85324e+00 

-3.22305e+00 

-3.00927e+00 

-1.52450e-02 

6.03175e-03 

-1.50588e-02 

6.28130e-03 

1.47654e+00 

6.62846e+00 

-8.73821e-01 

-1.33125&+00 

-1.43629e-03 

3.72158e-02 

-1.07722e-03 

3.76852e-02 
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Table D.16. Correlation Coefficients for the PWR Fuel Assembly F without the Control 
Rod Cluster Inserted. 

J/(}>ave Effecting the Homogenized Parameter 

( Boundary and Energy Group ) 

Left 1 Left 2 

Sal 

S a 2 

vEfi 

vS f 2 

2 . i « 

Effected cross section 

1.91797e-02 

7.96073e-03 

2.17609e-02 

1.42464e-02 

-1.82487e-02 

4.02982e-03 

2.21616e-02 

4.56948e-03 

3.96635e-02 

-3.82752e-03 

Effected Edge-to-Average Flux Ratio ( Boundary and Energy Group ) 

Left 1 6.79144e+00 1.62973e+00 

Left 2 4.75633e+00 7.00487e+00 

Right 1 -3.22480e+00 -9.77200e-01 

Right 2 -2.99127e+00 -1.48906e+00 

Top 1 -1.71G88e-02 -1.90407e-03 

Top 2 3.56291e-03 3.58585e-02 

Bottom 1 -1.67755e-02 -1.24497e-03 

Bottom 2 4.03152e-03 3.66944e-02 
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Table D.17. Correlation Coefficients for the BWR Fuel Assembly B with the Control 
Blade Inserted and the Fuel Temperature Increased. 

J/4>ave Effecting the Homogenized Parameter 
( Boundary and Energy Group ) 

Left 1 Left 2 Top 1 Top 2 

Effected cross section 

2 a l -1.59167e-01 -1.19594e-02 -1.62351e-01 -6.88622e-03 

2 a 2 -1.78316e-01 -2.40294e-01 1.41356e-01 1.34441e-01 

v S M -1.40039e-01 -2.49312e-03 -3.37843e-01 -1.65441e-02 

vS f 2 -9.47569e-02 -2.18640e-01 -1.71772e-01 -2.70070e-01 

2 5 l - 2 9.26919e-02 6.37985e-03 8.20562e-02 2.86813e-03 

Effected Edge-to-Average Flux Ratio ( Boundary and Energy Group ) 

Left 1 4.56868e+00 6.19451e-01 -2.17617e-03 4.24558e-02 

Left 2 2.65020e+00 4.59756e+00 1.80632e-01 1.20148e-01 

Right 1 -1.89632e+O0 -4.56745e-01 4.75730e-01 -3.71098e-02 

Right 2 -2.06878e+00 -1.49549e+00 -4.22182e-01 -3.47964e-01 

Top 1 5.18333e-0l 4.4171 Oe-02 5.95502e+00 3.87537e-01 

Top 2 9.92134e-()l 4.357 !6e-01 3.83937e+00 5.66853e+00 

Bottom 1 -7.04395e-02 -4.26879e-02 -2.36242e+00 -2.83177e-01 

Bottom 2 -3.55457e-01 -3.29345e-01 -2.11152e+00 -9.71918e-01 
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Table D.18. Correlation Coefficients for the BWR Fuel Assembly B with the Control 
Blade Inserted and 40% Water Void. 

J/(f»ave Effecting the Homogenized Parameter 

( Boundary and Energy Group ) 

Left 1 Left 2 Top 1 Top 2 

Effected cross section 

2 . i -1.39489e-01 -6.13984e-03 -1.30793e-01 -3.14052e-03 

s a 2 -1.56548e-0l -2.36947e-01 1.386l7e-01 1.33462e-01 

vZ,i -1.15245e-01 3.20623e-04 -2.8161 le-01 -8.90055e-03 

vS f2 -4.53713e-02 -1.45989e-01 -1.24800e-01 -2.14402e-01 

2 . ^ 7.19988e-02 1.26890e-03 1.20412e-01 3.44420e-03 

Effected Edge-to-Average Flux Ratio ( Boundary and Ent ;rgy Group ) 

Left 1 3.61938e+00 3.29424e-01 3.11061e-02 2.78298e-02 

Left 2 1.93780e+00 3.54716e+00 1.21561e-01 1.0222 le-01 

Right 1 -1.54059e+00 -2.43181e-01 3.69176e-01 -2.50705e-02 

Right 2 -1.60648e+00 -1.34160e+00 -2.54883e-01 -3.41277e-01 

Top 1 4.22583e-01 1.90082e-02 4.453 80e+00 2.08407e-01 

Top 2 6.26034e-01 2.58863e-0I 2.65030e+00 4.32716e+00 

Bottom 1 -2.17901e-02 -1.94735e-02 -1.89672e+00 -1.66445e-01 

Bottom 2 -2.63927e-01 -2.77391e-01 -1.61680e+00 -9.29075e-01 
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Table D.19. Correlation Coefficients for the BWR Fuel Assembly B with the Control 
Blade Inserted and a Linear Gradient for the Fuel Cross Sections. 

J/(J>avc Effecting the Homogenized Parameter 
( Boundary and Energy Group ) 

Left 1 Left 2 Top 1 Top 2 

Effected cross section 

S . i -8.13728e-02 6.30496e-03 -1.66744e-01 -5.80100e-03 

s a 2 -1.09044e-01 -1.84586e-01 1.29999e-01 1.33111e-01 

vE n -5.8047 le-01 1.67441e-02 -3.38304e-01 -1.55679e-02 

vS f2 -1.74796e-02 -1.55470e-01 -1.69141e-01 -2.64482e-01 

E 8 1-2 9.14660e-02 6.71024e-03 7.90999e-02 2.96814e-03 

Effected Edge-to-Average Flux Ratio ( Boundary and Energy Group ) 

Left 1 4.49116e+00 6.13736e-01 -5.58387e-02 4.03997e-02 

Left 2 2.69929e+00 4.6965 le+00 1.27426e-01 1.23620e-01 

Right 1 -1.85303e+00 -4.46654e-01 5.30033e-01 -3.46115e-02 

Right 2 -1.96320e+00 -1.42073e+00 -3.25423e-01 -3.34942e-01 

Top 1 5.16860e-01 4.49617e-02 5.68784e+00 3.91735e-01 

Top 2 1.01562e+00 4.55838e-01 3.61040e+00 5.65058e+00 

Bottom 1 -6.76669e-02 -4.20949e-02 -2.12676e+00 -2.84887e-01 

Bottom 2 -3.30645e-01 -3.08014e-01 -1.91835e+00 -9.49860e-01 
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