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SUMMARY

A method that makes it feasible to incorporate global reactor information into
homogenized parameters used for nodal diffusion theory analyses was developed. Global
reactor information can be used sucessfully to find homogenized parameters that are more
accurate than infinite lattice homogenized parameters, but past approaches are expensive.
An iterative method was developed that achieves the objective by using linear correlations
to model changes in the homogenized parameters due to current-to-flux ratios from the
nodal solution.

A numerical approach was used to analyze several one- and two-dimensional
geometries. The one-dimensional analyses showed that the edge-to-average flux ratio from
the lattice homogenization should be correlated rather than the flux discontinuity factor.
Accurate flux discontinuity factoys are then found from the edge-to-average flux ratio
correlation. It was found that accurate coﬁe'lations required a boundary condition, the
shifted circle _co.ndition,,.-that is uncommon to transport theory codes. This boundary
condition allows a current to be creafed on a node boundary but other higher odd
moments of the an_gtilar flux are equal to zero. It was demonstrated that this effect caused

the scalar flux on the surface of a node to be more accurate than other transport theory
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boundary conditions. The one-dimensional analyses also showed that linear correlafions
are sufficiently accurate to model the. global reactor effects on the homogenized
parameters.

Two-dimensional analyses of light water reactor assemblies demonstrated that the
| iterative procedure reduces the assembly power errors by a factor of two compared to
using infinite lattice homogenized parameters without correlations. The analyses also
confirmed that the method is independent of the flux approximation used in the nodal
code and independent of the diffusion coetficients provided that reasonable diffusion
coefficients are used. However, it was also shown that more accurate flux approximations
and diffusion coefficients require only one or two adjustments to the homogenized

parameters to achieve practical convergence on the homogenized parameters.

xvii
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CHAPTER 1

INTRODUCTION TO NODAL ANALYSIS

1.1 Development of Nodal Analysis Methods

During the 1980's, several nodal codes for the solution of the neutron diffusion
equation developed into popular reactor analysis tools."*** Lawrence reported that the
accuracies of nodal codes are the same factor of ten as fine mesh finite difference
calculations for the IAEA benchmark problems.’ Despite thcir_ proven accuracy, there are
some basic approximations in-the ‘nodal analysis routines.

Development of nodal codes beéan in the 1960's with the FLARE® code. The
initial purposes of nodal codes wefg to-serve as reactor simula.tors rather than detailed
analysis tools. ‘With this purpose in 1_111'_n(i, a 'pin—by—pin analysis was not necessary so
nodal codes modellcq an entire fucl assqmbly. as one node. The FLARE code used a
one-and-a-half group model ( no thermal lcai;age ) and adjusted reactor parameters such

as reflector albedos to fit actual operating experience. Due to these approximations, easly

nodal codes of the FLARE type .could d’ivérge“ from a solution in the limit of infinitely

small mesh spacing. To avoid this problem, L‘onsistcntly formulated nodal codes’ ( or
modern nodal cedcé:)-bégan éme-rgiﬂg'-=-during the 1:970' s. These codes avoid the use of
empirical parameters and reflector albedos and use higher ordered flpx approximations.’®
This allows consistently formulated nodal codes to converge and yield accurate results in

1




the limit of an infinite number of spatial meshes. This is also a feature of finite difference
equations. As the mesh spacing decreases, the Taylor series approximation for derivatives
becqmes more accurate.” A distinction between nodal diffusion theory and fine mcsﬁ
finite difference is the transverse integrated procedure. In this procedure, the diffusion
equation is integrated over the transverse directidns to supply leakage terms. In essence,
hodal diffusion equations are one-dimensional equations with known leakages in the
transverse direction. Conversely, finite difference equations solve for fluxes in all
surrounding nodes.

After consistently formuiated nbc_la] codes developed, the question remained how
to generate homogeniied -réactok phramctcrs frofn the heterogeneous node. Nodal codes
model a large heterogeneous region of the reactor ( often an entire fuel assembly ) as a
single homogeneous node by using equivalent homogenized parameters. The equivalent
homogenized parameters aré.cross sections and diffusion coefficients that represent the
region or node. Also included as homogenized parameters are heterogeneity factors or
flux discohti-nuity factors which add freedom to the equation set to allow one solution
method. to give results equivalent to another solution method. Equivalent homogenized
parameters are discusscd in Section 1.2. In the late 1970's, Koebke provided the first
homogenization technique capable of reproducing exact reference rcsﬁlts. Exact refers to
a known reference solution such as a heterogeneous (ransport theory solution. Koebke

named this homogenization method equivalence theory®® because it allowed a nodal
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diffusion theory solution to yield equivalent results from a réfcrencc solution. Smith later
developed a different approach called generalized equivalence theory.'®!!

The global reactor calculation provides integral information concerning each node.
This information is volume integrated reaction rates and fluxes and surface integrated
currents of the node. Ho@ever, in addition to integral results, a reactor analysis also needs
to supply local parameters, such as individual fuel pin powers. Much work during the
1980's addressed this dehomogenization problem.**'>'*!% There are three ways to
calculate local information. One mcthod uses the surface integrated currents as boundary
conditions to a detailed heterogeneoug calculation, This method is accurate but also
expensive. The second method. is simply to combine global. flux tilts in a node with a
form function created during the homogenization process. The homogenization process
renders ‘detailed information about hctcfogencitics within the node. Specifically, an
intranodal flux shape is available. The intranodal flux shape provides a form function for
the power output of each pin in the node without accounting for the global flux shape in
the node. This method is computationally cheap but also less accurate. It superimposes
the x and y direction flux shapes in a node together as an approximation to the global flux
shape for that node. This action often overpredicts the flux along the perimeter of the
node and especially at the comers of the node. Another method uses global reactor
information to approximate corner point fluxes for each node. Corner point fluxes
eliminate the error of overpredicting the global flux shape along the perimeter of the node

and as a result, reduce errors throughout the node. This method does not use the principle




of superposition to multiply the x and y direction flux shapes together, but uses a more
analytic solution to obtain the global flux shape in the node. The method is both accurate
and inexpensive.

In conclusion, nodal ahéllyse.s consist of three distinct steps.” The homogenization
process collapses each heterogeneous node into a set of equivalent homogenized
parameters required by the nodal code. Then, the nodal code calculates integral results of
a global reactor solution and laétly, the dehomogenization process finds local reactor
characteristics. Since global reactor infqrm_atjon is unavailable during the homogenization
process, the homogenized parameters do 1_'_10t acc_:dunt for the effect that neighboring node.s
bave on them. There are several methods to include these interassembly effects into the
homogenized parameters, however, methods previously developed are expensive and, as
a result, are impractical to employ in the nodal analysis procedure. In this thesis, a
method that is feasible for including interassembly effects to improve the accuracy of the
homogenized parameters is presented. Also, it is shown that the improved homogenized

parameters improve the accuracy of the global reactor solution.

1.2 Formally Exact Hornogenization Schemes
In this section, we will assume that an exact solution ( or reference solution ) is
available and can be used to find homogenized parameters. It is proven that traditional

flux-weighted constants and an additional homogenization parameter are necessary to
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reproduce integral results of the reference solution. This exercise serves to develop theory

needed in calculating homogenized pararieters for practical cases.

8,10,11,15

The goal of homogenization is to'-pf‘rcs_crvc certain integral properties of each
node. Koebke provides the following two-postulates® that define a homogenized node to
be equivalent to the same heterogeneous. area.

“Postulate A: The integral flux-and intégral reaction rates are conserved
in the homogenized area.

Postulate B: The integral net ¢urrerits and lintegral fluxes are conserved
at each interface of this area.”

If the integral reaction rates and net currents are conserved, then the neutron balance
equation from a nodal code is equivalent to the volume integrated neutron balance

equations of a heterogeneous reference solution. This ensures that the multiplication factor

of the nodal code will be identical to the reference multiplication factor. For the nodal
neutron balance equation to be equivalent to a reference case, we only need to conserve
reaction rates within the node and the sum of the leakages over all faces of the node.
However, the Second postulate states more than the sum of the lg:akages on all faces. The
second postulate requires conservation of the net current along each surface. Koebke
stated this postolate to ensure that the coupling of the neutron current between adjacent
nodes is correct. The first postulate also contains a condition on the average flux in the

volume. This condition provides a way to find equivalent homogenized cross sections

h

e A o




before obtaining a nodal solution. Conserving the surface integrated fluxes provides a
method to account for deficiencies in the nodal code flux approximdtion.

We preserve reaction rates by requiring

[, Bagds0aV = [ 5, 00 dv
- a=atf.ew,
g-=12..G

(1.1)

where @ is a cross section type and @ is the energy group. The symbols " and ~ refer to

homogeneous and heterogeneous values, respectively. By definition, the homogenized

cross section is a constant parameter throughout the volume of the node. Therefore, we
can remove it from the volume integral on the left side of equation (1.1). Koebke's first
postulate states that the volume integral of the flux in the homogenized area must equal

the volume integral of the flux in the heterogeneous area, or

_fy,,&’gm av - f%cbg(r) dv . (1.2)

Thus, the proper homogenized cross section is

£ .0e Mav -
f‘.a’g . f],/'a -9— g . . 1.3)
[, @0 ev




Using Fick's law, we preserve the surface integrated currents on a particular

surface, &, by requiring

B f st 9gkvég(f)'d8 = f s,*J ,(F)-dS (14)

where the diffusion coefficient is constant along the surface of the node. The proper

homogenized diffusion coefficient is

J (r)-dS
.gk _ fs’,k g (15)

fs,*vé.f-’(r) a8 |

Equation (1.5) is the only medlod to define rigorously correct diffusion coefficients
simply because diffusion theory is based on Fick's law, equation (1.4). The numerator of
equation (1.5) is a value from the reference solution and therefore creates no problem for
defining a diffusion coefficient ( assuming the reference solution is known ). Howevcr,l
the denominator of equation (1.5) is dependent on the nodal code flux approximation. For
most flux approximations, the derivative in the denominator of equation (1.5) is a known

.function of the volume integrated flux and the surface integrated edge fluxes. From
Koebke's two postulates, these values are also known from the reference solution.
Therefore, it is easy to ﬁnd-;i diffusion coefficient for each surface of each node in the

global reactor problem.




However, specifying a different diffusiﬁn coefficient for each node surface is not
a common practice in reactor physics. The common practice is to use the divergence
theorem's to transform the surface integrals of the neutron currents into volume intégrals
and specify one diffusion coefficient for each energy group that is valid on all surfaces
of the node. Equation (1.6) demonstrates the divergence theorem applied to the leakage
term in the diffusion cﬁuation. This action makes all terms in the neutron balance

equation volume integrals rather than a mixture of volume integrals and surface integrals.
7 - = DOk . - _ . 2
fs,,*'jgm ds - fs,.* D)V m -ds - fy,, b, 92 ) dv (1.6)

- It is extremely unlikely that equation (1.5) will produce the same diffusion
coefficient for all surfaces of a node. Therefore, after applying the divergence theorem
and designating one diffusion coefficient, it is 'i'rnpossiblc. to reproduce the reference
solution in a rigorous sense unless a degree of freedom is added to the nodal diffusion
equati_ons. The surface integrated current is an impértant term in the neutron balance
equation and the average flux is crucial in calculating reaction rates. Consequently, the
degree of freedom cannot bé added to these variables. However, the surface integrated
edge flux serves only in the flux cdﬁpiing equation between adjacent nodes. Since there
is no need to dirccﬂ§ conserve the surface inteérated flux, a degree of freedom can be

added to mis.variablc in a way that dubws for reproduction of the reference surface




integrated edge flux. Equivalence theory provided the first method to define and employ

the degree of freedom to the neutron balance equations and the coupling equations.

Equivalence Theory*’

Equivalence theory is the name given to the first procedure capable of reproducing
all integral quantities of a known solution. Koebke"’ achieved this task by creating an
additional homogenization parameter that he named the heterogeneity factor. This scheme.

assigns a heterogeneity factor to each surface of node / by

B A7) dS |
= fs_:__ . (L7)
R GLE |

Koebke's mct.hqd multiplies thclsurfacc integrated: fluxes in the nodal equation by the
heterogeneity factor to arrive at. the reference surface intcgratcdlﬂuxcs. Thls satisfies his
second postulate on the surface integrated edge flux. |

Koebke limited the two heterogeneity factors that lie in a common direction to be
identical. Thus, he relates the heterogeneity factors on the two opposite sides of a node

( kand £ ) by

"( - f'k' L . (18)

where the energy group subscripts are dropped for convenience. Figure 1.1 shows the
geometry orientation for two adjacent nodes. -
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Figufe 1.1. Nome_hclaiur_e- As;sociatcd with Two Adjacent Nodes.
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Under Koebkes' condition, there exists one and only one diffusion coefficient in
each coordinate direction that can preserve leakages while the heterogeneity factors are
equivalent on the opposite surfaces of the node. This is because equations (1.7) and (1.8)
add only one degree of freedom to the diffusion equations per direction. This method
treats the diffusion coefficient as a purely artificial quantity.!" The diffusion coefficient
is not found from material properties within the node as it is with traditional flux
weighted constants. The diffusion coefficient and heterogeneity factor are directionally
dependent parameters in this method. This is due to the additional requirements for the
net currents in the other diregtions. For exarnple. in two-dimensional Cartesian geometries,
there are four equations for the surface integrated fluxes ( equation (1.7) ), four equations
for the diffusion coefficients ( equation (1.5) j, and one equation for the average flux
( equation (1.2) ). With the limit on the heterogeneity factor ( equation (1‘.8) ), the
equations require directionally dependant diffusion coefficients. Nevertheless, the method
can reproduce exact results.

‘The heterogeneity factor is dependent on the flux approximation used in the nodal
code. Different flux appr_oximations will result in different edge flux values. This, in turn,
will result in a distinct heterogeneity factdr for any given flux approximation. Therefore,
the flux approximat.ion. used to find the heterogeneity factor must be consistent with the
flux approximation used in the nodal code. |

The use of heterogeneity factors requires us to modify the flux coupling equation

between two adjacent nodes. In the actual reactor and in high order solutions, the flux is
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everywhere continuous. The surface integrated reference flux of node / is equal to the
surface integrated reference flux of node 7+ 1 on the common surface. By employing

equation (1.7), the flux coupling equation between nodes /7 and 7+ 1 is

7 [ ®7Mds = [ d]Fds -
; ¥ (19}

S #hamas -1, ¢l M as

where face & and 4. an;-djspla&cd m Figure k1.
Generalized Eq '{.uivalent;e"Ithg 101,13 o

Smith improved Kocbice's equi\lral_ence' theory to form generalized equivalence
theorj. In this method, each surface of the node has a separate discontinuity factor
independent of all-'-.ot'hc,rs. This resglts in a degree of freedom for each surface of the node
and each'cnergy éroup.__ By'ma-kin'g this chan"ge, the diffusion coefficient can have any
arbitrary non-zero value. This allows the diffusion coefficient to be found from material
properties of the node or by any .other" prefc:rrcd. method. Regardless of the value of the
diffusion coefficient ( any non-zero value ), the flux discontinuity facto;s have added
enough degrees of freedom to the diffusion equations to allow Koebkes' two postulates
to hold true.

Smith defines the flux discontinuity factor the same as Koebke defines the

heterogeneity factor in equation (1.7). The coupling equation is similar to that of Koebke
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with an important difference. The difference between the two coupling equations is that
Smith's equation is face dependent while Koebkes equation is direction dependent.
~ Because of this difference, equivalence theory has only one set of homogenized
parameters that can satisfy Koebkes' two postulates while generalized equivalence theory
has an infinite number of sets of homogenized parameters that satisfy the postulates.
Both equivalence theory and generalized equivalence theory can reproduce exact
results. An interesting feature of these methods is that exact results are obtainable even
when we solve the diffusion equation by approximateé methods rather rthax‘l analytic

methods®!+?

assuming again that the exact solution is known. This means that, in
principle, flux discontinuity factors or heterogeneity factors correct for heterogeneities

within the node and errors in the diffusion theory approximation.

1.3 Approximations to Obtain Homogenized Parameters

For a homogenization scheme to be of practical use, it must be able to
approximate homogenized parameters without knowledge of a reference solution. The
formally exact method described in the preceding section assumed that the exact solution

is available for use. If the exact solution were aVailable, then there would be no need to

solve the nodal diffusion equations. This section describes the traditional homogenization

method and the approximate methods of Koebke and Smith.
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All of the homogenization methods discussed in this section analyze .
two-dimensional slices of the node rather than a three-dimensional node. The axial
direction of a node usually does not contain any heterogeneities. Therefore, a
two-dimensional model is appropriate. In some cases such as control rod insertion or grid
spacers, the axial direction does have strong heterogeneities. Smith and others' devised
a method to account for these heterogeneities.

Traditional Homggenization

The traditional homogenization method models a fuel assembly as either one node
or four nodes. The boundary conditions for the node are zero net cumrent boundary
conditions. If the currents were known, then we could use the currents as boundary
conditions. However, at the time of homogenization, estimates for the current directions
and magnitudes are unknown. Therefore, the best guess for the boundary conditions are
zero net currents. Smith points out that homogenized parameters are primarily dependent
on the heterogeneities within the node and of secondary importance on the location in the
reactor.!’ This statement supports the use of zero net current boundary conditions.

After imposing these boundary conditions on a node, the neutron balance equation
is solved to find a flux profile throughout the node. There are several different methods
available to solve the neutron balance equations. These methods can range from
continuous energy Monte Carlo methods to fine mesh finite difference methods. In
traditional lattice homogenization, the flux profile is used to flux and volume weigh the

heterogeneous cross sections by using equation (1.3). There are many different methods

14 ‘




to calculate diffusion cocfﬁcicnt§ from the assembly calculation.“"'j‘ Among tﬁcsc are flux
and volume weighing either the 'diflfusion coefficient 6r the transport cross section.
However, we cannot employ equation (1.5) to define a diffusion coefficient because the
currents { numerator of equation (1.5) ) are equal to zero. Thus, the diffusion coefficient
would also equal zero. After making these approximations, enough information is
available to evaluate equation (1.3) for estimated values of the homogenized cross
sections and diffusion coefficients. Traditional homogenization methods implicitly
assumed flux discontinuity factors or heterogeneity - factors to be equal to unity.
Examining equation (1.9} with unity discontinuity factors shows that these equations are
equivalent to the traditional continuity of flux condition.

Traditional homogenization still served as the basis for advanced homogenization
methods after Koebke proved that an additional parameter was necessary. Both Koebke
and Smith used the zero net current boundary éondition to approxi_matc homogenized
parameters. Koebkes approximation is known as sirnplified equivalence theory.® In both
methods, all cross sections are flux and volume weighted. However, there are differences
in how the diffusion coefficients and the flux discontinuity factors or heterogeneity factors
are found in each method.

Simplified Equivalence Theory®®

Due to the manner that Koebke defines the heterogeneity factor and due to the
geometric symmetry of PWR assemblies, Koebke could derive simplified equivalence

theory. Simplified equivalence theory allows a code that does not use heterogeneity
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factors ( one that implies unity values )} to improve global solutions to the reactor
problem. Aiso, the method finds the diffu.sicm coefficient from actual material properties
rather than treating it as an artificial value.

Consider a two-dimensional slice of a fuel assembly that is perfectly symmetric
about the center of the node. Equation (1.3) defines the homogenized cross sections of
the node to be spatially constant. Therefore, if an assembly calculation uses zero net
cutrent boundary conditions, then the diffusion theory flux profile for the single assembly
is constant throughout the node. By equation (1.2}, the value of fhc flux is equal to the
average value found from the heterogeneous assembly calculation. Thetefore, the
denominator of equation (1.7) is equal to the average flux from the heterogeneous
assembly calculation. Since the heterogeneities in the region are syminetric, the surface
integrated edge flux on all boundaries are equal to each other thus providing a value for
the numerator of equation (1.7). Therefore, all surfaccs have the same value for the
heterogeneity factor. This satisfies Koebke's requirement for the heterogeneity factor
( equation (1.8) ) and no restrictions have been placed on the diffusion coefficient. This
allowed Koebke to calculate the diffusion coefficient from actual material properties.

Furthermore, the homogenized parameters have no directional depcnd_encics; and no limits
are placed on the solution method for the diffusion equation. A single assembly
calculation such as this corrects only for h't:tcrogcneities within the lattice. Since the
currents are equal to zero on all s'urfaces, the metﬁod cannot correct for the flux

approximation employed in the nodal code or an errant diffusion coefficient.
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Koebke named this approximation simplified equivalence theory because he could
deceive the nodal code and completely remove the heterogeneity factors from the
diffusion equations. This allowed the nodal code to use the traditional flux coupling
equation rather than the discontinuous flux coupling equation shown by equation (1.9).
Nodal codes expand the second order derivative in the diffusion equation by
approximating the derivative with an average flux and fluxes at the edges of the region.
Koebke replaces the homogeneous edge fluxes in the diffusion equation with the
heterogeneous edge flux by rearranging equation (1.7). This substitution incorporates the
heterogeneity factor into the neutron balance equation ( nodal diffusion equation ) and the
current coupling equations. The fluxes on the surface of the node are now the
hetcrogcl;eous surface fluxes that are continuous at the node interfaces. Koebke separates
the heterogeneity factor away from the surface fluxes by combining it with the diffusion

coefficient. He defines a simplified diffusion coefficient by

(1.10)

---..,bc
[}
—r
.

However, the diffusion equation multiplies the diffusion coefficient and average flux
together. If the simplified diffusion coefficient replaces the actual diffusion coefficient,

then, as a conservation principle, we must multiply the average flux by the heterogeneity
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factor, In simpler terminology, we are multiplying and dividing this term by the
heterogeneity factor. Thus, Koebke defines a simplified average flux as

$.=td,. (1.11)

f L

Continuing, if the simplified flux replaces the actual flux, then, as before, we must divide
the cross sections by the heterogeneity factor to preserve reaction rates. Accordingly,

Koebke divides all cross sections by the heterogeneity factor to form the simplified cross

sections,

[ 1]

(1.12)

b

1]
8
e,

a,f

—

-

Before starting the diffusion theory calculation, all cross sections and the diffusion
coefficient for each node and energy group are divided by the heterogeneity factor of that
node and energy group. This completely removes the heterogeneity factor from the
neutron balance equation and the current coupling'j equations and allows use of the
traditional flux coupling equation. Once the diffusion calculation converges, the simplified
average flux is divided by the heterogeneity factor to arrive at the actual average flux.

The edge fluxes are the actual heterogencous edge fluxes.
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Generalized Equivalence Theory'*!'"*

Koebke's simplified equivalence theory works ideally for fuel assemblies that are
one-eighth symmetric; however, BWR assemblies are only one-half symmetric at best.
Asymmetric nodes must employ Smith's homogenization scheme. The assembly
calculation with zero net current boundary conditions computes a flux shape throughout
the node. As before, if the nodal cross sections are to be spatially constant, then the flux
shape from a diffusion calculation on the single node is also constant and equal to the
average flux of the heterogeneous assembly calculation. The heterogeneous assembly
calculation provides surface integrated fluxes for the numerator of equation (1.7) and the
above argument provides a value for the denominator of equation (1.7). For asymmetric
regions, the surface integrated fluxes from the lattice calculation are not equal on all
surfaces and therefore each surface of the node will have a different flux discontinuity
factor.

Since the flux dis.continuity factors for the surfaces of a node are different, we
cannot divide them into the cross sections and the diffusion coefficient for the node
without creating several cross product terms. Therefore, we must incorporate the
discontinuous flux coupling equation ( equation (1.9) } into the nodal code.

Heterogeneity factors are not definable for asymmetric regions when the current
boundary conditions are equal to zero. This is because the diffusion theory flux shape in
a single node with zero net current boundary conditions is always flat despite the

diffusion coefficient or the flux approximation employed in the nodal equations.
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Therefore, it is impossible to define a heterogeneity factor when thé hetelrogeheous
assembly calculation computes different values of the surface integrated edge fluxes and
when the diffusion theory flux profile is flat. As in Koebke's single aé.scmbly lattice
homogenization technique, Smith's generalized equivalence theory corrects only for
heterogeneities within the lattice and not for the nodal code flux approximatidn or
discrepancies in the diffusion coefficient,

In this thesis, we will from now on use flux discontinuity factors rather than
heterogeneity factors to avoid the restrictions on directional dependencies and

complications due to using zero net current boundary conditions on asymmetric lattices.

1.4 Methods for More Accurate Hornogenized Parameters

There are schemes that can obtain more accurate homogenized parameters than the
methods discussed in Section 1.3 but at increased computer expenses. The only error in
the methods discussed in Section 1.3 is the zero net current boundary condition. A more
accurate fnethod must therefore have a better approximation for the boundary conditions
used in the assembly calculation. There are two ways to accotuplish this task. One method
is to extend the geometry around the assembly calculation. The other is an iterative

technique between the lattice hofnogcnization process and the global reactor calculation.

Extended Geometry Calculations
Extended geometry calculations model the region of interest and its closest

" neighbors. There are different ways to perform extended geometry calculations. The two
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models discussed in this segment still employ zero net current boundary condi_tions. Other
methods not discussed can use periodic boundary conditions if the geometry shows
periodic tendencies. For example, some reactors may arrange a small group of assemblies
periodically thus providing a strong argument to use periodic boundary conditions.

One extended geometry ﬁlodel surrounds the region of interest by all of its closest
neighbors, as displayed in Figure 1.2.'° The solid lines in the figure represent node
boundaries and assembly boundaries. Small squares within each node portray
heterogeneities. The five-node extended geomcﬁy still employs zero net current boundary
conditions but the boundaries are not next to the "rcgic.m of interest but on the neighboring
regions.

Since the material and geometric properties of the neighboring regions are most
likely different from the region of interest, a current will be present at each interface. The
current-to-flux ratio ( using the average flux of the node ) of the extended geometry
cﬂculaﬂon will be a good estimate of that found from a global calculation. However, the
current is an estimated value because the zero net current boundary conditions on the
neighboring regions are estimates. Nevertheless, this extended gcome&y method provides
better estimates of the current directions and magnitudes on each surface of the node than
zero net current boundary conditions. This Jeads to a more acburatc intranodal flux shape
needed to homogenize cross sections, specify the diffusion coefficient, and calculate the

flux discontinuity factors.
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Figure 1.2. Five-Node Extended Geometry Representation.
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Figure 1.3 displays another way to model an extended geometry calculation. This
design is the color set or supercell design.® Assemblies of common geometric
characteristics and burnup are assigned a similar color. The four #sscmbly portions form
é color set when located next to one another. This layout is useful for PWR assemblies
because of their symmetry. The current at the center of a symmetric assembly will be
closer to zero than at a boundary where material properties between adjacent nodes are
different. As before, the solid lines distinguoish the node boundaries. The dashed lines are
~ assembly boundaries. Figure 1.3 shows four nodes per assembly. We can estimate that the
currents along the midplanc; of each assembly are near but not exactly equal to .zcro.
Therefore, this method also assumes zero net current boundary conditions. The interior
solid lines of the figure are node boundaries where larger currents are expected.

Although the boxed area of Figure 1.3 is the same size as an assembly, this
method does require more computer resources than the single assembly calculation. If
each assembly is symmetric, the single assembly calculation discussed in Section 1.3 can
use this knowledge to model only one-eighth of ‘the assembly. Thus, the color set model
would be eight times lérgcr tllatn the single ﬁssémbly ‘model. This design also increases
computer resources because the color sets are location dcﬁendent., As an approximation,
there is the same number of color sets in a reactor as there are assemblies. In the single
assembly calculation, there are several assembly types that we can use at any location in
the reactor. Although the number of color set calculations can be reduced, there are still

many more combinations of color sets than there are assembly types.
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Figure 1.3. Color Set Extended Geometry Representation.
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Iterative Techniques

At the end of the global calculation, approximate values for the currents are known
compared to average fluxes in t.he'node. These currents can bé used to aid in finding more
accurate homogenized parameters. Because zero net current boundary conditions were
used to calculate the homogenized parameters for the global reactor calculation, the
currents retrieved from the global reactor calculation are a;iproximatc values, but they are
exceedingly good approximations. The information from the global reactor solution can
be employed in one of three ways to improve the homogenized paramctcfs. The éurrénts
can serve as boundary conditions to rehomogenize the node and then the improved
homogenized parameters used in the global calculation to obtain more accurate global
results. Another method uses response matrices and the global reactor information to
update the homogenized parameters. A third method uses the global reactor information
to adjust the homogenized parameters based on.conclations.

The rehomogenization approach is an cxbensivé process. Manf nodes in a reactor
are similar in material composition and geometric form, but all nodes will have different
cutrents across theirlboundaries. This means that each node will need homogenization
again using the currents from the global reactor solution. This leads to more accurate
homogenized parameters, but the computer resources needed to rehomogenize each node
makes this an unattractive process.

'Smith showed that this method can successfully improve values for the

homogenized parameters. Smith used fine mesh diffusion calculations to find
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homogenized parameters.'® After completing a’ global calculation using infinite lattice

homogenized parametefé, the currents and:'ass'e!n-‘a-bly powers serve as input conditions to
rehomogenize each assembly. The ..resultiﬁg set of homogenized parameters were closer
to referenc;: values than the infinite la_ttic;é hdmd"gtni_zéd parameters. This, in turn, leads
to a more accurate global n_:act(jr solution. The preceding steps form one iteration. In
Smiths' examples, the. method converged in very few iterations (' two or three iterations ).

Another iterative meth_od studied by Cheng, Hoxie, and Henry'’ employed response
matrices to update the homogenized parameters. This method computes response matrices
based on a net current across segments of a node face rather than partial currents. In the
conventional response matrix method,’ the response matrices reflect how outgoing partial
currents change due to an incoming partial current on only one surface. The conventional
response matrix method does not directly produce a surface integrated edge flux needed
to compute discontinuity factors. By basing the response matrices on net currents, the
surface integrated flux is available and discontinuity factors are obtainable. This method
also updates homogenized cross sections. However, the method finds net current response
matrices from partial current response matrices. In several cases studied by Cheng, Hoxie,
and Henry, the response matrice techniqlue for improving homogcniz.cd parameters

moderately improved the accuracy of the homogenized parameters and the global solution.

Koebke® and Rahnemna®”* have introduced the concept of correlating the

homogenized cross sections to global reactor information. They rendered general forms

for correlations that the homogenized cross sections should follow. Both Koebke and
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. Rahnema propose the same characteristics. In the correlation equations, the homogenized
parameters change as a function of the current-to-flux ratio. The correlations are linear

and therefore contain no cross product terms. Their correlation is

\ ~ _k Yo 1.13
ga ~ Hga 1*223-“1 . ( )

In this correlation, the homogenized cross section, %, would change as the current-to-flux
ratio deviates from thc'zcro-nét current value used to caiculate the initial homogenized
cross section, Z°,

To increase the accuracy of the gldbal reactor calculation, the homogenized cross
sections and flux discontinuity factors must be improved simultaneously. Smith showed
that reference homogenized cross sections used with infinite lattice flux discontinuity
factors actually leads to greater errors than using all infinite lattice homogenized
parameters.'! Similarly, he also showed that using infinite lattice cross sections with
reference flux discontinuity factors also leads to greater errors than using all infinite
lattice homogenized parameters. Therefore, equation (1.13) should apply not only to the
homogenized cross sections but to the flux discontinuity factors as well  or a relationship
involving the flux discontinuity factors ). Smith states that these errors arise because the
infinite lattice cross sections and flux discontinuity factors are a matched set of

equivalence parameters.'" This implies that any further improvements also should match
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the infinite lattice calcuiation method. In particular, the same method used in lattice
homogenization should decide any correlation: parameters.

Equation (1.13) provides some pfbli'iising characteristics. If it is possible to find
the correlation coefficients ag":, -before starting the global reactor’ calculation, then the
homogenized parameters can be adjusted during _operatiﬂn of the nodal code ﬁs needed.
This allows us to improve the a(_:curacy of the _gl_oballreactor:s_olution without iterating
between the nodal calculation and the lattice homogenization calculation. Also,
equation (1.13) implies that the homogenized parameters and correlation coefficients are
independent of position in the-reactor._ If tr-ué;-i the comrelation coefficients apply to ail
similar asscmblieé much like the infinite lattice homogenized parameters.

In an iterative technique such as this, the question arises if the solution converges
toward or diverges away from a reference solution. Smith answered this question by first
calculating a global reactor solution using a homogenization code ( the homogenization
code was a fine mesh finite difference calculation ). Then he performed an iterative
technique coupling the homogenization code and the nodal code. The homogenization in
this case was on each node. Smith showed that the global solution of the iterative
technique converged toward the global solution solved by the lattice homogénizatiou

code.'® However, the solution will not converge exactly to this reference solution because

the currents from the nodal code are surface integrated values. Thus, the current across -

a node face has no shape and the accuracy reduces.
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1.5 Objectives
The objective of this thesis is to find a feasible method to use global reactor

information to improve homogenized parameters used in nodal diffusion theory. The

method should be applicable to multiple dimensions and multiple energy group analyses. -

The lattice homogenization code should be of any analysis type. Since lattice
homogenization codes usually employ a transport theory method, work in this thesis also
employs transport theory. Extended _g.eometry and response matrix techniques for
improving the accuracy of homogenized parameters are undesirable because of their
increased computer resources. Also, iterative methods that completely rehomogenize each
node are too expensive for the analysis also.

An iterative method that updates the homogenized parameters by correlations does

appear attractive. For extremely simple geometries, correlations can be found by applying

perturbation theory or variational analysis. However, these techniques are not used in this
thesis because of the difficulty involved in lattice homogenization. Usually, lattice
homogenization involves twenty energy groups® or more and trends in the nuclear
industry are moving toward explicitly modelling all details of the fuel assembly, including
explicit modelling of each fuel pin within the assembly,®** These concerns eliminate
using perturbation theory or variational analysis to find correlation coeffici.cnts. .Thus, the
method used to find correlation coefficients is a numerical approach. This approach is

much more feasible than other methods due to its simplicity.
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Two computer codes were written for this thesis. A description of these computer
codes is provided in Chapter II as well as validation results for the codes. One code is a
lattice homogenization code that nses discrete ordinates and the other is a nodal diffusion
theory code. The remaining chapters develop the procedure to improved the homogenized
parameters, In Chapter I, the method is developed in a one-dimensional geometry, This
chapter discusses the dependency of the correlations to the cncrgy groups and faces of the
node. Also, a boundary condition necessary to obtain accurate correlations is introduced
in Chapter HI. The correctness of the lmcar cbrrelaﬁon approximation is addressed. In

Chapter IV, the method is extended to two dimensions and the effect of using different

flux approximations in the nodal cede and different values for the diffusion coefficients
is examined. Dependencies of the correlation coefficients are also examined. Lastly, a

review of the method is given in Chapter V along with ideas for future research.
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CHAPTER [I

ANALYSIS TOOLS

2.1 Analysis Tools Overview

Three different analysis tools.arc employed in this thesis to examine methods for
improving homogenized parameters. One tool is a pin cell homogenization code. This
code provides multigroup cross seﬁtions for each location in a fuel assembly. The second
tool, a lattice homogenization .cbdc, collapses the pin cell cross sections to find
homogenized parameters for each assembly. Ttis gsschtial that the lattice homogenization
code can perform reactor calculations on multiple assemblies so that reference solutions
are available. The final tool, a nodal diffusion theory code, uses the homogenized
parameters in a global reactor calculation in an attempt to reproduce .rcfcrcncc results. The
goal of this chapter is to validate the use of these tools. |

The pin cell bomogenization code used to calculate macroscopic Cross sections is
COMBINE/PC.* COMBINE/PC starts With' ENDF/B-Version 5 cross sections and
resonance parameters collapsed to 166 energy. groups. It liscs the Nordhiem numerical
method for resolved resonances and the Wigner rational approximation for unresolved
resonances. COMBINE/PC also uses the Dancoff-Ginsburg correction factor and the ABH
method for spatial homogenization. The B, and B, approximations to the Boltzmann
transport equation calculate the neutron spectrum needed to collapse the fine group cross
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sections into broad energy groups. lts use in this thesis is to provide reasonable and
consistent values for two-group pin cell, water gap, and control cross sections. This code
provides the P, scattering Cross sections used in Chapter III and the P, scattering cross
sections used iﬁ Chapter IV, COMBINE/PC has been benchmarked to Monte Carlo
techniques for cylindrical fuel rod cells, and several moderated and unmoderated critical
assemblies.”

JTC is the lattice homogenization code written for use in this thesis. JTC has
several options that are uncommon to many transport theory codes. For instance, the code
has a unique boundary condition spcciﬁcati_on. Rather than reflective, periodic, or albedo
boundary conditions, the user enters values for the odd moments of the an gular flux along
each boundary forl each energy group. This option allows greater flexibility in the
boundary condition specifications. The code can also spatially homogenize distinct regions
within the geometry. With this option, reference homogenized paraﬁleters for each fuel
assembly in a global reactor problem are réadily avéilablc. Another fcamrc of JTC is that
flux discontinuity factors and -cdgé—to-avcragc flux ratios are direct output values.
Section 2.2 describes the lattice homogenization code in greater detail.

Lastly, a nodal diffusion theory code, NDT,' also written for this thesis, tests the

homogenized parameters and any method to update them. NDT has the ability to update

homogenized parameters during operation. Section 2.3 describes the nodal code in greater

detail. Several different flux approximations are available in NDT.
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2.2 ITC Description

The neutronics and lattice homogenization routines of JTC are described in this
section. As a general overview, the code uses the diamond difference approximation to
the discrete ordinates transpost cquationi However, it stores only the moments of the
angular flux in each coordinate directioﬁ. The clodc contains two levels of iterations. Inner
iterations update the moments of the angular flux in each coordinate direction and the
outer iteration is the power method for finding the eigenvalue. The code employs a
two-step acceleration® technique.

From Henry’, the discrete ordinates transport equation including spherical

barmonics is interpreted as
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where Y and Y are the spherical harmonics functi(jn and its complex conjugate,
respectively,
/ and m are indexes to the spherical harmonics,
d and ¢ are discrete directions,
¢ and @' are energy groups,
w1, is the weight associated with direction o',
K4 is the effective multiplication factor,
W is the discretized angular flux,
and £ =msin@ with u = cos @ .
The cfoss sections, O , are macroscopic Cross sections but are written using the lower
case sigmas to avoid confusion with summation signs. The spherical harmonic function

is

m_ (@) (- pm , 22
v [ L ]P, (4) exp(im®) @2)

where 2,7(u) is the associated Legendre polynomial, A direction, o, has known values
of 1, © and weights from the angular quadrature set.

Integrating equation (2.2) over all- © _mduccs the source term in the transport
equation to a one-dimensional form ( m 1s an-intégcr number ). This is equivalent to
setting /77 equal to zero. In this_-ca.éc, thé sphericﬁl hafmoﬁics function and its complex

conjugate reduce to

Li

. T




Vs = Vig = V2FT PPtug) = V21T Plu,) @3
causing the source term to become

G & L
B> vol 65+ 3 Y (2/+1)0) _,, Plun ¢, 2.4)

g =1 g=1/=0

where L is the truncation order of the scattering cross section and ¢’ is the moment of

the angﬁlar flux defined by
D _
¢ = E WP Yy - 2.3)
J=1

In JTC, the indexes ¢ and & iun the above three equations are only in the x direction.
The source term in equation (2.4) depcnds on ux and the x direction moments ( also a
function of x ). Therefore, for /m = 0, the source term has no y direction dependencies.
The y direction contributions appear for /77 # 0 in the spherical harmonics function. By
neglecting the y direction components in the scattering terms, a simple method emerges
for solving the two-dimensional discrete ordinates equ.ation. |

JTC employs equations (2.3) through (2.5) when solving for the angular fluxes and

their moments in the x direction. It finds the y direction angular fluxes and moments by
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rotating the axis. In this case, we replace the direction cosine juwith £ in equations (2.3)
through (2.5). This provides identical equations necessary for finding the y direction
angular fluxes and moments. Pivoting the directional sweeps is a common method
employed in many multidimensional boundary value problems. This approach is named
the ADI ( alternating direction implicit®* ) method.

The purpose of JTC isafud assembly homogenization code. In such calculations,
there is a large amount of fisson throughout the geometry. Thus, anisotropic scattering
is less important in these type problems than in deep penetration shielding calculations,
for example. This means that neglecting the m ~ 0 terms in the spherical harmonics
function is a reasonable assumption.

The outer iteration process converges to an eigenvalue, ks, using the power

iteration method. This process is expressed mathematically by

Vol G Al ., Vol G

o 1ovawn fJo (2.6)
seff  0=1 T T | TMg<t>9
*eff 0=1

where the superscript p is the iteration index. At the beginning of an iteration, the
method computes the total neutron source in the geometiry from fission at iteration p and
divides by the eigenvalue of that iteration. The upcoming inner iterations use the
eigenvalue at iteration p. At the end of the inner iteration sweeps, the updated values

for the scalar fluxes (index p + 1 ) cause the source term to change. Equation (2.6)
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