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SUMMARY

A method that makes it feasible to incorporate global reactor information into
homogenized parameters used for nodal diffusion theory analyses was developed. Global
reactor information can be used sucessfully to find homogenized parameters that are more
accurate than infinite lattice homogenized parameters, but past approaches are expensive.
An iterative method was developed that achieves the objective by using linear correlations
to model changes in the homogenized parameters due to current-to-flux ratios from the
nodal solution.

A numerical approach was used to analyze several one- and two-dimensional
geometries. The one-dimensional analyses showed that the edge-to-average flux ratio from
the lattice homogenization should be correlated rather than the flux discontinuity factor.
Accurate flux discontinuity factoys are then found from the edge-to-average flux ratio
correlation. It was found that accurate coﬁe'lations required a boundary condition, the
shifted circle _co.ndition,,.-that is uncommon to transport theory codes. This boundary
condition allows a current to be creafed on a node boundary but other higher odd
moments of the an_gtilar flux are equal to zero. It was demonstrated that this effect caused

the scalar flux on the surface of a node to be more accurate than other transport theory
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boundary conditions. The one-dimensional analyses also showed that linear correlafions
are sufficiently accurate to model the. global reactor effects on the homogenized
parameters.

Two-dimensional analyses of light water reactor assemblies demonstrated that the
| iterative procedure reduces the assembly power errors by a factor of two compared to
using infinite lattice homogenized parameters without correlations. The analyses also
confirmed that the method is independent of the flux approximation used in the nodal
code and independent of the diffusion coetficients provided that reasonable diffusion
coefficients are used. However, it was also shown that more accurate flux approximations
and diffusion coefficients require only one or two adjustments to the homogenized

parameters to achieve practical convergence on the homogenized parameters.

xvii
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CHAPTER 1

INTRODUCTION TO NODAL ANALYSIS

1.1 Development of Nodal Analysis Methods

During the 1980's, several nodal codes for the solution of the neutron diffusion
equation developed into popular reactor analysis tools."*** Lawrence reported that the
accuracies of nodal codes are the same factor of ten as fine mesh finite difference
calculations for the IAEA benchmark problems.’ Despite thcir_ proven accuracy, there are
some basic approximations in-the ‘nodal analysis routines.

Development of nodal codes beéan in the 1960's with the FLARE® code. The
initial purposes of nodal codes wefg to-serve as reactor simula.tors rather than detailed
analysis tools. ‘With this purpose in 1_111'_n(i, a 'pin—by—pin analysis was not necessary so
nodal codes modellcq an entire fucl assqmbly. as one node. The FLARE code used a
one-and-a-half group model ( no thermal lcai;age ) and adjusted reactor parameters such

as reflector albedos to fit actual operating experience. Due to these approximations, easly

nodal codes of the FLARE type .could d’ivérge“ from a solution in the limit of infinitely

small mesh spacing. To avoid this problem, L‘onsistcntly formulated nodal codes’ ( or
modern nodal cedcé:)-bégan éme-rgiﬂg'-=-during the 1:970' s. These codes avoid the use of
empirical parameters and reflector albedos and use higher ordered flpx approximations.’®
This allows consistently formulated nodal codes to converge and yield accurate results in

1




the limit of an infinite number of spatial meshes. This is also a feature of finite difference
equations. As the mesh spacing decreases, the Taylor series approximation for derivatives
becqmes more accurate.” A distinction between nodal diffusion theory and fine mcsﬁ
finite difference is the transverse integrated procedure. In this procedure, the diffusion
equation is integrated over the transverse directidns to supply leakage terms. In essence,
hodal diffusion equations are one-dimensional equations with known leakages in the
transverse direction. Conversely, finite difference equations solve for fluxes in all
surrounding nodes.

After consistently formuiated nbc_la] codes developed, the question remained how
to generate homogeniied -réactok phramctcrs frofn the heterogeneous node. Nodal codes
model a large heterogeneous region of the reactor ( often an entire fuel assembly ) as a
single homogeneous node by using equivalent homogenized parameters. The equivalent
homogenized parameters aré.cross sections and diffusion coefficients that represent the
region or node. Also included as homogenized parameters are heterogeneity factors or
flux discohti-nuity factors which add freedom to the equation set to allow one solution
method. to give results equivalent to another solution method. Equivalent homogenized
parameters are discusscd in Section 1.2. In the late 1970's, Koebke provided the first
homogenization technique capable of reproducing exact reference rcsﬁlts. Exact refers to
a known reference solution such as a heterogeneous (ransport theory solution. Koebke

named this homogenization method equivalence theory®® because it allowed a nodal
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diffusion theory solution to yield equivalent results from a réfcrencc solution. Smith later
developed a different approach called generalized equivalence theory.'®!!

The global reactor calculation provides integral information concerning each node.
This information is volume integrated reaction rates and fluxes and surface integrated
currents of the node. Ho@ever, in addition to integral results, a reactor analysis also needs
to supply local parameters, such as individual fuel pin powers. Much work during the
1980's addressed this dehomogenization problem.**'>'*!% There are three ways to
calculate local information. One mcthod uses the surface integrated currents as boundary
conditions to a detailed heterogeneoug calculation, This method is accurate but also
expensive. The second method. is simply to combine global. flux tilts in a node with a
form function created during the homogenization process. The homogenization process
renders ‘detailed information about hctcfogencitics within the node. Specifically, an
intranodal flux shape is available. The intranodal flux shape provides a form function for
the power output of each pin in the node without accounting for the global flux shape in
the node. This method is computationally cheap but also less accurate. It superimposes
the x and y direction flux shapes in a node together as an approximation to the global flux
shape for that node. This action often overpredicts the flux along the perimeter of the
node and especially at the comers of the node. Another method uses global reactor
information to approximate corner point fluxes for each node. Corner point fluxes
eliminate the error of overpredicting the global flux shape along the perimeter of the node

and as a result, reduce errors throughout the node. This method does not use the principle




of superposition to multiply the x and y direction flux shapes together, but uses a more
analytic solution to obtain the global flux shape in the node. The method is both accurate
and inexpensive.

In conclusion, nodal ahéllyse.s consist of three distinct steps.” The homogenization
process collapses each heterogeneous node into a set of equivalent homogenized
parameters required by the nodal code. Then, the nodal code calculates integral results of
a global reactor solution and laétly, the dehomogenization process finds local reactor
characteristics. Since global reactor infqrm_atjon is unavailable during the homogenization
process, the homogenized parameters do 1_'_10t acc_:dunt for the effect that neighboring node.s
bave on them. There are several methods to include these interassembly effects into the
homogenized parameters, however, methods previously developed are expensive and, as
a result, are impractical to employ in the nodal analysis procedure. In this thesis, a
method that is feasible for including interassembly effects to improve the accuracy of the
homogenized parameters is presented. Also, it is shown that the improved homogenized

parameters improve the accuracy of the global reactor solution.

1.2 Formally Exact Hornogenization Schemes
In this section, we will assume that an exact solution ( or reference solution ) is
available and can be used to find homogenized parameters. It is proven that traditional

flux-weighted constants and an additional homogenization parameter are necessary to
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reproduce integral results of the reference solution. This exercise serves to develop theory

needed in calculating homogenized pararieters for practical cases.

8,10,11,15

The goal of homogenization is to'-pf‘rcs_crvc certain integral properties of each
node. Koebke provides the following two-postulates® that define a homogenized node to
be equivalent to the same heterogeneous. area.

“Postulate A: The integral flux-and intégral reaction rates are conserved
in the homogenized area.

Postulate B: The integral net ¢urrerits and lintegral fluxes are conserved
at each interface of this area.”

If the integral reaction rates and net currents are conserved, then the neutron balance
equation from a nodal code is equivalent to the volume integrated neutron balance

equations of a heterogeneous reference solution. This ensures that the multiplication factor

of the nodal code will be identical to the reference multiplication factor. For the nodal
neutron balance equation to be equivalent to a reference case, we only need to conserve
reaction rates within the node and the sum of the leakages over all faces of the node.
However, the Second postulate states more than the sum of the lg:akages on all faces. The
second postulate requires conservation of the net current along each surface. Koebke
stated this postolate to ensure that the coupling of the neutron current between adjacent
nodes is correct. The first postulate also contains a condition on the average flux in the

volume. This condition provides a way to find equivalent homogenized cross sections

h
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before obtaining a nodal solution. Conserving the surface integrated fluxes provides a
method to account for deficiencies in the nodal code flux approximdtion.

We preserve reaction rates by requiring

[, Bagds0aV = [ 5, 00 dv
- a=atf.ew,
g-=12..G

(1.1)

where @ is a cross section type and @ is the energy group. The symbols " and ~ refer to

homogeneous and heterogeneous values, respectively. By definition, the homogenized

cross section is a constant parameter throughout the volume of the node. Therefore, we
can remove it from the volume integral on the left side of equation (1.1). Koebke's first
postulate states that the volume integral of the flux in the homogenized area must equal

the volume integral of the flux in the heterogeneous area, or

_fy,,&’gm av - f%cbg(r) dv . (1.2)

Thus, the proper homogenized cross section is

£ .0e Mav -
f‘.a’g . f],/'a -9— g . . 1.3)
[, @0 ev




Using Fick's law, we preserve the surface integrated currents on a particular

surface, &, by requiring

B f st 9gkvég(f)'d8 = f s,*J ,(F)-dS (14)

where the diffusion coefficient is constant along the surface of the node. The proper

homogenized diffusion coefficient is

J (r)-dS
.gk _ fs’,k g (15)

fs,*vé.f-’(r) a8 |

Equation (1.5) is the only medlod to define rigorously correct diffusion coefficients
simply because diffusion theory is based on Fick's law, equation (1.4). The numerator of
equation (1.5) is a value from the reference solution and therefore creates no problem for
defining a diffusion coefficient ( assuming the reference solution is known ). Howevcr,l
the denominator of equation (1.5) is dependent on the nodal code flux approximation. For
most flux approximations, the derivative in the denominator of equation (1.5) is a known

.function of the volume integrated flux and the surface integrated edge fluxes. From
Koebke's two postulates, these values are also known from the reference solution.
Therefore, it is easy to ﬁnd-;i diffusion coefficient for each surface of each node in the

global reactor problem.




However, specifying a different diffusiﬁn coefficient for each node surface is not
a common practice in reactor physics. The common practice is to use the divergence
theorem's to transform the surface integrals of the neutron currents into volume intégrals
and specify one diffusion coefficient for each energy group that is valid on all surfaces
of the node. Equation (1.6) demonstrates the divergence theorem applied to the leakage
term in the diffusion cﬁuation. This action makes all terms in the neutron balance

equation volume integrals rather than a mixture of volume integrals and surface integrals.
7 - = DOk . - _ . 2
fs,,*'jgm ds - fs,.* D)V m -ds - fy,, b, 92 ) dv (1.6)

- It is extremely unlikely that equation (1.5) will produce the same diffusion
coefficient for all surfaces of a node. Therefore, after applying the divergence theorem
and designating one diffusion coefficient, it is 'i'rnpossiblc. to reproduce the reference
solution in a rigorous sense unless a degree of freedom is added to the nodal diffusion
equati_ons. The surface integrated current is an impértant term in the neutron balance
equation and the average flux is crucial in calculating reaction rates. Consequently, the
degree of freedom cannot bé added to these variables. However, the surface integrated
edge flux serves only in the flux cdﬁpiing equation between adjacent nodes. Since there
is no need to dirccﬂ§ conserve the surface inteérated flux, a degree of freedom can be

added to mis.variablc in a way that dubws for reproduction of the reference surface




integrated edge flux. Equivalence theory provided the first method to define and employ

the degree of freedom to the neutron balance equations and the coupling equations.

Equivalence Theory*’

Equivalence theory is the name given to the first procedure capable of reproducing
all integral quantities of a known solution. Koebke"’ achieved this task by creating an
additional homogenization parameter that he named the heterogeneity factor. This scheme.

assigns a heterogeneity factor to each surface of node / by

B A7) dS |
= fs_:__ . (L7)
R GLE |

Koebke's mct.hqd multiplies thclsurfacc integrated: fluxes in the nodal equation by the
heterogeneity factor to arrive at. the reference surface intcgratcdlﬂuxcs. Thls satisfies his
second postulate on the surface integrated edge flux. |

Koebke limited the two heterogeneity factors that lie in a common direction to be
identical. Thus, he relates the heterogeneity factors on the two opposite sides of a node

( kand £ ) by

"( - f'k' L . (18)

where the energy group subscripts are dropped for convenience. Figure 1.1 shows the
geometry orientation for two adjacent nodes. -
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Figufe 1.1. Nome_hclaiur_e- As;sociatcd with Two Adjacent Nodes.
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Under Koebkes' condition, there exists one and only one diffusion coefficient in
each coordinate direction that can preserve leakages while the heterogeneity factors are
equivalent on the opposite surfaces of the node. This is because equations (1.7) and (1.8)
add only one degree of freedom to the diffusion equations per direction. This method
treats the diffusion coefficient as a purely artificial quantity.!" The diffusion coefficient
is not found from material properties within the node as it is with traditional flux
weighted constants. The diffusion coefficient and heterogeneity factor are directionally
dependent parameters in this method. This is due to the additional requirements for the
net currents in the other diregtions. For exarnple. in two-dimensional Cartesian geometries,
there are four equations for the surface integrated fluxes ( equation (1.7) ), four equations
for the diffusion coefficients ( equation (1.5) j, and one equation for the average flux
( equation (1.2) ). With the limit on the heterogeneity factor ( equation (1‘.8) ), the
equations require directionally dependant diffusion coefficients. Nevertheless, the method
can reproduce exact results.

‘The heterogeneity factor is dependent on the flux approximation used in the nodal
code. Different flux appr_oximations will result in different edge flux values. This, in turn,
will result in a distinct heterogeneity factdr for any given flux approximation. Therefore,
the flux approximat.ion. used to find the heterogeneity factor must be consistent with the
flux approximation used in the nodal code. |

The use of heterogeneity factors requires us to modify the flux coupling equation

between two adjacent nodes. In the actual reactor and in high order solutions, the flux is
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everywhere continuous. The surface integrated reference flux of node / is equal to the
surface integrated reference flux of node 7+ 1 on the common surface. By employing

equation (1.7), the flux coupling equation between nodes /7 and 7+ 1 is

7 [ ®7Mds = [ d]Fds -
; ¥ (19}

S #hamas -1, ¢l M as

where face & and 4. an;-djspla&cd m Figure k1.
Generalized Eq '{.uivalent;e"Ithg 101,13 o

Smith improved Kocbice's equi\lral_ence' theory to form generalized equivalence
theorj. In this method, each surface of the node has a separate discontinuity factor
independent of all-'-.ot'hc,rs. This resglts in a degree of freedom for each surface of the node
and each'cnergy éroup.__ By'ma-kin'g this chan"ge, the diffusion coefficient can have any
arbitrary non-zero value. This allows the diffusion coefficient to be found from material
properties of the node or by any .other" prefc:rrcd. method. Regardless of the value of the
diffusion coefficient ( any non-zero value ), the flux discontinuity facto;s have added
enough degrees of freedom to the diffusion equations to allow Koebkes' two postulates
to hold true.

Smith defines the flux discontinuity factor the same as Koebke defines the

heterogeneity factor in equation (1.7). The coupling equation is similar to that of Koebke
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with an important difference. The difference between the two coupling equations is that
Smith's equation is face dependent while Koebkes equation is direction dependent.
~ Because of this difference, equivalence theory has only one set of homogenized
parameters that can satisfy Koebkes' two postulates while generalized equivalence theory
has an infinite number of sets of homogenized parameters that satisfy the postulates.
Both equivalence theory and generalized equivalence theory can reproduce exact
results. An interesting feature of these methods is that exact results are obtainable even
when we solve the diffusion equation by approximateé methods rather rthax‘l analytic

methods®!+?

assuming again that the exact solution is known. This means that, in
principle, flux discontinuity factors or heterogeneity factors correct for heterogeneities

within the node and errors in the diffusion theory approximation.

1.3 Approximations to Obtain Homogenized Parameters

For a homogenization scheme to be of practical use, it must be able to
approximate homogenized parameters without knowledge of a reference solution. The
formally exact method described in the preceding section assumed that the exact solution

is available for use. If the exact solution were aVailable, then there would be no need to

solve the nodal diffusion equations. This section describes the traditional homogenization

method and the approximate methods of Koebke and Smith.

13




All of the homogenization methods discussed in this section analyze .
two-dimensional slices of the node rather than a three-dimensional node. The axial
direction of a node usually does not contain any heterogeneities. Therefore, a
two-dimensional model is appropriate. In some cases such as control rod insertion or grid
spacers, the axial direction does have strong heterogeneities. Smith and others' devised
a method to account for these heterogeneities.

Traditional Homggenization

The traditional homogenization method models a fuel assembly as either one node
or four nodes. The boundary conditions for the node are zero net cumrent boundary
conditions. If the currents were known, then we could use the currents as boundary
conditions. However, at the time of homogenization, estimates for the current directions
and magnitudes are unknown. Therefore, the best guess for the boundary conditions are
zero net currents. Smith points out that homogenized parameters are primarily dependent
on the heterogeneities within the node and of secondary importance on the location in the
reactor.!’ This statement supports the use of zero net current boundary conditions.

After imposing these boundary conditions on a node, the neutron balance equation
is solved to find a flux profile throughout the node. There are several different methods
available to solve the neutron balance equations. These methods can range from
continuous energy Monte Carlo methods to fine mesh finite difference methods. In
traditional lattice homogenization, the flux profile is used to flux and volume weigh the

heterogeneous cross sections by using equation (1.3). There are many different methods
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to calculate diffusion cocfﬁcicnt§ from the assembly calculation.“"'j‘ Among tﬁcsc are flux
and volume weighing either the 'diflfusion coefficient 6r the transport cross section.
However, we cannot employ equation (1.5) to define a diffusion coefficient because the
currents { numerator of equation (1.5) ) are equal to zero. Thus, the diffusion coefficient
would also equal zero. After making these approximations, enough information is
available to evaluate equation (1.3) for estimated values of the homogenized cross
sections and diffusion coefficients. Traditional homogenization methods implicitly
assumed flux discontinuity factors or heterogeneity - factors to be equal to unity.
Examining equation (1.9} with unity discontinuity factors shows that these equations are
equivalent to the traditional continuity of flux condition.

Traditional homogenization still served as the basis for advanced homogenization
methods after Koebke proved that an additional parameter was necessary. Both Koebke
and Smith used the zero net current boundary éondition to approxi_matc homogenized
parameters. Koebkes approximation is known as sirnplified equivalence theory.® In both
methods, all cross sections are flux and volume weighted. However, there are differences
in how the diffusion coefficients and the flux discontinuity factors or heterogeneity factors
are found in each method.

Simplified Equivalence Theory®®

Due to the manner that Koebke defines the heterogeneity factor and due to the
geometric symmetry of PWR assemblies, Koebke could derive simplified equivalence

theory. Simplified equivalence theory allows a code that does not use heterogeneity
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factors ( one that implies unity values )} to improve global solutions to the reactor
problem. Aiso, the method finds the diffu.sicm coefficient from actual material properties
rather than treating it as an artificial value.

Consider a two-dimensional slice of a fuel assembly that is perfectly symmetric
about the center of the node. Equation (1.3) defines the homogenized cross sections of
the node to be spatially constant. Therefore, if an assembly calculation uses zero net
cutrent boundary conditions, then the diffusion theory flux profile for the single assembly
is constant throughout the node. By equation (1.2}, the value of fhc flux is equal to the
average value found from the heterogeneous assembly calculation. Thetefore, the
denominator of equation (1.7) is equal to the average flux from the heterogeneous
assembly calculation. Since the heterogeneities in the region are syminetric, the surface
integrated edge flux on all boundaries are equal to each other thus providing a value for
the numerator of equation (1.7). Therefore, all surfaccs have the same value for the
heterogeneity factor. This satisfies Koebke's requirement for the heterogeneity factor
( equation (1.8) ) and no restrictions have been placed on the diffusion coefficient. This
allowed Koebke to calculate the diffusion coefficient from actual material properties.

Furthermore, the homogenized parameters have no directional depcnd_encics; and no limits
are placed on the solution method for the diffusion equation. A single assembly
calculation such as this corrects only for h't:tcrogcneities within the lattice. Since the
currents are equal to zero on all s'urfaces, the metﬁod cannot correct for the flux

approximation employed in the nodal code or an errant diffusion coefficient.
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Koebke named this approximation simplified equivalence theory because he could
deceive the nodal code and completely remove the heterogeneity factors from the
diffusion equations. This allowed the nodal code to use the traditional flux coupling
equation rather than the discontinuous flux coupling equation shown by equation (1.9).
Nodal codes expand the second order derivative in the diffusion equation by
approximating the derivative with an average flux and fluxes at the edges of the region.
Koebke replaces the homogeneous edge fluxes in the diffusion equation with the
heterogeneous edge flux by rearranging equation (1.7). This substitution incorporates the
heterogeneity factor into the neutron balance equation ( nodal diffusion equation ) and the
current coupling equations. The fluxes on the surface of the node are now the
hetcrogcl;eous surface fluxes that are continuous at the node interfaces. Koebke separates
the heterogeneity factor away from the surface fluxes by combining it with the diffusion

coefficient. He defines a simplified diffusion coefficient by

(1.10)

---..,bc
[}
—r
.

However, the diffusion equation multiplies the diffusion coefficient and average flux
together. If the simplified diffusion coefficient replaces the actual diffusion coefficient,

then, as a conservation principle, we must multiply the average flux by the heterogeneity
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factor, In simpler terminology, we are multiplying and dividing this term by the
heterogeneity factor. Thus, Koebke defines a simplified average flux as

$.=td,. (1.11)

f L

Continuing, if the simplified flux replaces the actual flux, then, as before, we must divide
the cross sections by the heterogeneity factor to preserve reaction rates. Accordingly,

Koebke divides all cross sections by the heterogeneity factor to form the simplified cross

sections,

[ 1]

(1.12)

b

1]
8
e,

a,f

—

-

Before starting the diffusion theory calculation, all cross sections and the diffusion
coefficient for each node and energy group are divided by the heterogeneity factor of that
node and energy group. This completely removes the heterogeneity factor from the
neutron balance equation and the current coupling'j equations and allows use of the
traditional flux coupling equation. Once the diffusion calculation converges, the simplified
average flux is divided by the heterogeneity factor to arrive at the actual average flux.

The edge fluxes are the actual heterogencous edge fluxes.
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Generalized Equivalence Theory'*!'"*

Koebke's simplified equivalence theory works ideally for fuel assemblies that are
one-eighth symmetric; however, BWR assemblies are only one-half symmetric at best.
Asymmetric nodes must employ Smith's homogenization scheme. The assembly
calculation with zero net current boundary conditions computes a flux shape throughout
the node. As before, if the nodal cross sections are to be spatially constant, then the flux
shape from a diffusion calculation on the single node is also constant and equal to the
average flux of the heterogeneous assembly calculation. The heterogeneous assembly
calculation provides surface integrated fluxes for the numerator of equation (1.7) and the
above argument provides a value for the denominator of equation (1.7). For asymmetric
regions, the surface integrated fluxes from the lattice calculation are not equal on all
surfaces and therefore each surface of the node will have a different flux discontinuity
factor.

Since the flux dis.continuity factors for the surfaces of a node are different, we
cannot divide them into the cross sections and the diffusion coefficient for the node
without creating several cross product terms. Therefore, we must incorporate the
discontinuous flux coupling equation ( equation (1.9) } into the nodal code.

Heterogeneity factors are not definable for asymmetric regions when the current
boundary conditions are equal to zero. This is because the diffusion theory flux shape in
a single node with zero net current boundary conditions is always flat despite the

diffusion coefficient or the flux approximation employed in the nodal equations.
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Therefore, it is impossible to define a heterogeneity factor when thé hetelrogeheous
assembly calculation computes different values of the surface integrated edge fluxes and
when the diffusion theory flux profile is flat. As in Koebke's single aé.scmbly lattice
homogenization technique, Smith's generalized equivalence theory corrects only for
heterogeneities within the lattice and not for the nodal code flux approximatidn or
discrepancies in the diffusion coefficient,

In this thesis, we will from now on use flux discontinuity factors rather than
heterogeneity factors to avoid the restrictions on directional dependencies and

complications due to using zero net current boundary conditions on asymmetric lattices.

1.4 Methods for More Accurate Hornogenized Parameters

There are schemes that can obtain more accurate homogenized parameters than the
methods discussed in Section 1.3 but at increased computer expenses. The only error in
the methods discussed in Section 1.3 is the zero net current boundary condition. A more
accurate fnethod must therefore have a better approximation for the boundary conditions
used in the assembly calculation. There are two ways to accotuplish this task. One method
is to extend the geometry around the assembly calculation. The other is an iterative

technique between the lattice hofnogcnization process and the global reactor calculation.

Extended Geometry Calculations
Extended geometry calculations model the region of interest and its closest

" neighbors. There are different ways to perform extended geometry calculations. The two
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models discussed in this segment still employ zero net current boundary condi_tions. Other
methods not discussed can use periodic boundary conditions if the geometry shows
periodic tendencies. For example, some reactors may arrange a small group of assemblies
periodically thus providing a strong argument to use periodic boundary conditions.

One extended geometry ﬁlodel surrounds the region of interest by all of its closest
neighbors, as displayed in Figure 1.2.'° The solid lines in the figure represent node
boundaries and assembly boundaries. Small squares within each node portray
heterogeneities. The five-node extended geomcﬁy still employs zero net current boundary
conditions but the boundaries are not next to the "rcgic.m of interest but on the neighboring
regions.

Since the material and geometric properties of the neighboring regions are most
likely different from the region of interest, a current will be present at each interface. The
current-to-flux ratio ( using the average flux of the node ) of the extended geometry
cﬂculaﬂon will be a good estimate of that found from a global calculation. However, the
current is an estimated value because the zero net current boundary conditions on the
neighboring regions are estimates. Nevertheless, this extended gcome&y method provides
better estimates of the current directions and magnitudes on each surface of the node than
zero net current boundary conditions. This Jeads to a more acburatc intranodal flux shape
needed to homogenize cross sections, specify the diffusion coefficient, and calculate the

flux discontinuity factors.
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Figure 1.2. Five-Node Extended Geometry Representation.
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Figure 1.3 displays another way to model an extended geometry calculation. This
design is the color set or supercell design.® Assemblies of common geometric
characteristics and burnup are assigned a similar color. The four #sscmbly portions form
é color set when located next to one another. This layout is useful for PWR assemblies
because of their symmetry. The current at the center of a symmetric assembly will be
closer to zero than at a boundary where material properties between adjacent nodes are
different. As before, the solid lines distinguoish the node boundaries. The dashed lines are
~ assembly boundaries. Figure 1.3 shows four nodes per assembly. We can estimate that the
currents along the midplanc; of each assembly are near but not exactly equal to .zcro.
Therefore, this method also assumes zero net current boundary conditions. The interior
solid lines of the figure are node boundaries where larger currents are expected.

Although the boxed area of Figure 1.3 is the same size as an assembly, this
method does require more computer resources than the single assembly calculation. If
each assembly is symmetric, the single assembly calculation discussed in Section 1.3 can
use this knowledge to model only one-eighth of ‘the assembly. Thus, the color set model
would be eight times lérgcr tllatn the single ﬁssémbly ‘model. This design also increases
computer resources because the color sets are location dcﬁendent., As an approximation,
there is the same number of color sets in a reactor as there are assemblies. In the single
assembly calculation, there are several assembly types that we can use at any location in
the reactor. Although the number of color set calculations can be reduced, there are still

many more combinations of color sets than there are assembly types.
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Figure 1.3. Color Set Extended Geometry Representation.
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Iterative Techniques

At the end of the global calculation, approximate values for the currents are known
compared to average fluxes in t.he'node. These currents can bé used to aid in finding more
accurate homogenized parameters. Because zero net current boundary conditions were
used to calculate the homogenized parameters for the global reactor calculation, the
currents retrieved from the global reactor calculation are a;iproximatc values, but they are
exceedingly good approximations. The information from the global reactor solution can
be employed in one of three ways to improve the homogenized paramctcfs. The éurrénts
can serve as boundary conditions to rehomogenize the node and then the improved
homogenized parameters used in the global calculation to obtain more accurate global
results. Another method uses response matrices and the global reactor information to
update the homogenized parameters. A third method uses the global reactor information
to adjust the homogenized parameters based on.conclations.

The rehomogenization approach is an cxbensivé process. Manf nodes in a reactor
are similar in material composition and geometric form, but all nodes will have different
cutrents across theirlboundaries. This means that each node will need homogenization
again using the currents from the global reactor solution. This leads to more accurate
homogenized parameters, but the computer resources needed to rehomogenize each node
makes this an unattractive process.

'Smith showed that this method can successfully improve values for the

homogenized parameters. Smith used fine mesh diffusion calculations to find

25




homogenized parameters.'® After completing a’ global calculation using infinite lattice

homogenized parametefé, the currents and:'ass'e!n-‘a-bly powers serve as input conditions to
rehomogenize each assembly. The ..resultiﬁg set of homogenized parameters were closer
to referenc;: values than the infinite la_ttic;é hdmd"gtni_zéd parameters. This, in turn, leads
to a more accurate global n_:act(jr solution. The preceding steps form one iteration. In
Smiths' examples, the. method converged in very few iterations (' two or three iterations ).

Another iterative meth_od studied by Cheng, Hoxie, and Henry'’ employed response
matrices to update the homogenized parameters. This method computes response matrices
based on a net current across segments of a node face rather than partial currents. In the
conventional response matrix method,’ the response matrices reflect how outgoing partial
currents change due to an incoming partial current on only one surface. The conventional
response matrix method does not directly produce a surface integrated edge flux needed
to compute discontinuity factors. By basing the response matrices on net currents, the
surface integrated flux is available and discontinuity factors are obtainable. This method
also updates homogenized cross sections. However, the method finds net current response
matrices from partial current response matrices. In several cases studied by Cheng, Hoxie,
and Henry, the response matrice techniqlue for improving homogcniz.cd parameters

moderately improved the accuracy of the homogenized parameters and the global solution.

Koebke® and Rahnemna®”* have introduced the concept of correlating the

homogenized cross sections to global reactor information. They rendered general forms

for correlations that the homogenized cross sections should follow. Both Koebke and
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. Rahnema propose the same characteristics. In the correlation equations, the homogenized
parameters change as a function of the current-to-flux ratio. The correlations are linear

and therefore contain no cross product terms. Their correlation is

\ ~ _k Yo 1.13
ga ~ Hga 1*223-“1 . ( )

In this correlation, the homogenized cross section, %, would change as the current-to-flux
ratio deviates from thc'zcro-nét current value used to caiculate the initial homogenized
cross section, Z°,

To increase the accuracy of the gldbal reactor calculation, the homogenized cross
sections and flux discontinuity factors must be improved simultaneously. Smith showed
that reference homogenized cross sections used with infinite lattice flux discontinuity
factors actually leads to greater errors than using all infinite lattice homogenized
parameters.'! Similarly, he also showed that using infinite lattice cross sections with
reference flux discontinuity factors also leads to greater errors than using all infinite
lattice homogenized parameters. Therefore, equation (1.13) should apply not only to the
homogenized cross sections but to the flux discontinuity factors as well  or a relationship
involving the flux discontinuity factors ). Smith states that these errors arise because the
infinite lattice cross sections and flux discontinuity factors are a matched set of

equivalence parameters.'" This implies that any further improvements also should match

27




the infinite lattice calcuiation method. In particular, the same method used in lattice
homogenization should decide any correlation: parameters.

Equation (1.13) provides some pfbli'iising characteristics. If it is possible to find
the correlation coefficients ag":, -before starting the global reactor’ calculation, then the
homogenized parameters can be adjusted during _operatiﬂn of the nodal code ﬁs needed.
This allows us to improve the a(_:curacy of the _gl_oballreactor:s_olution without iterating
between the nodal calculation and the lattice homogenization calculation. Also,
equation (1.13) implies that the homogenized parameters and correlation coefficients are
independent of position in the-reactor._ If tr-ué;-i the comrelation coefficients apply to ail
similar asscmblieé much like the infinite lattice homogenized parameters.

In an iterative technique such as this, the question arises if the solution converges
toward or diverges away from a reference solution. Smith answered this question by first
calculating a global reactor solution using a homogenization code ( the homogenization
code was a fine mesh finite difference calculation ). Then he performed an iterative
technique coupling the homogenization code and the nodal code. The homogenization in
this case was on each node. Smith showed that the global solution of the iterative
technique converged toward the global solution solved by the lattice homogénizatiou

code.'® However, the solution will not converge exactly to this reference solution because

the currents from the nodal code are surface integrated values. Thus, the current across -

a node face has no shape and the accuracy reduces.
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1.5 Objectives
The objective of this thesis is to find a feasible method to use global reactor

information to improve homogenized parameters used in nodal diffusion theory. The

method should be applicable to multiple dimensions and multiple energy group analyses. -

The lattice homogenization code should be of any analysis type. Since lattice
homogenization codes usually employ a transport theory method, work in this thesis also
employs transport theory. Extended _g.eometry and response matrix techniques for
improving the accuracy of homogenized parameters are undesirable because of their
increased computer resources. Also, iterative methods that completely rehomogenize each
node are too expensive for the analysis also.

An iterative method that updates the homogenized parameters by correlations does

appear attractive. For extremely simple geometries, correlations can be found by applying

perturbation theory or variational analysis. However, these techniques are not used in this
thesis because of the difficulty involved in lattice homogenization. Usually, lattice
homogenization involves twenty energy groups® or more and trends in the nuclear
industry are moving toward explicitly modelling all details of the fuel assembly, including
explicit modelling of each fuel pin within the assembly,®** These concerns eliminate
using perturbation theory or variational analysis to find correlation coeffici.cnts. .Thus, the
method used to find correlation coefficients is a numerical approach. This approach is

much more feasible than other methods due to its simplicity.
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Two computer codes were written for this thesis. A description of these computer
codes is provided in Chapter II as well as validation results for the codes. One code is a
lattice homogenization code that nses discrete ordinates and the other is a nodal diffusion
theory code. The remaining chapters develop the procedure to improved the homogenized
parameters, In Chapter I, the method is developed in a one-dimensional geometry, This
chapter discusses the dependency of the correlations to the cncrgy groups and faces of the
node. Also, a boundary condition necessary to obtain accurate correlations is introduced
in Chapter HI. The correctness of the lmcar cbrrelaﬁon approximation is addressed. In

Chapter IV, the method is extended to two dimensions and the effect of using different

flux approximations in the nodal cede and different values for the diffusion coefficients
is examined. Dependencies of the correlation coefficients are also examined. Lastly, a

review of the method is given in Chapter V along with ideas for future research.
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CHAPTER [I

ANALYSIS TOOLS

2.1 Analysis Tools Overview

Three different analysis tools.arc employed in this thesis to examine methods for
improving homogenized parameters. One tool is a pin cell homogenization code. This
code provides multigroup cross seﬁtions for each location in a fuel assembly. The second
tool, a lattice homogenization .cbdc, collapses the pin cell cross sections to find
homogenized parameters for each assembly. Ttis gsschtial that the lattice homogenization
code can perform reactor calculations on multiple assemblies so that reference solutions
are available. The final tool, a nodal diffusion theory code, uses the homogenized
parameters in a global reactor calculation in an attempt to reproduce .rcfcrcncc results. The
goal of this chapter is to validate the use of these tools. |

The pin cell bomogenization code used to calculate macroscopic Cross sections is
COMBINE/PC.* COMBINE/PC starts With' ENDF/B-Version 5 cross sections and
resonance parameters collapsed to 166 energy. groups. It liscs the Nordhiem numerical
method for resolved resonances and the Wigner rational approximation for unresolved
resonances. COMBINE/PC also uses the Dancoff-Ginsburg correction factor and the ABH
method for spatial homogenization. The B, and B, approximations to the Boltzmann
transport equation calculate the neutron spectrum needed to collapse the fine group cross
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sections into broad energy groups. lts use in this thesis is to provide reasonable and
consistent values for two-group pin cell, water gap, and control cross sections. This code
provides the P, scattering Cross sections used in Chapter III and the P, scattering cross
sections used iﬁ Chapter IV, COMBINE/PC has been benchmarked to Monte Carlo
techniques for cylindrical fuel rod cells, and several moderated and unmoderated critical
assemblies.”

JTC is the lattice homogenization code written for use in this thesis. JTC has
several options that are uncommon to many transport theory codes. For instance, the code
has a unique boundary condition spcciﬁcati_on. Rather than reflective, periodic, or albedo
boundary conditions, the user enters values for the odd moments of the an gular flux along
each boundary forl each energy group. This option allows greater flexibility in the
boundary condition specifications. The code can also spatially homogenize distinct regions
within the geometry. With this option, reference homogenized paraﬁleters for each fuel
assembly in a global reactor problem are réadily avéilablc. Another fcamrc of JTC is that
flux discontinuity factors and -cdgé—to-avcragc flux ratios are direct output values.
Section 2.2 describes the lattice homogenization code in greater detail.

Lastly, a nodal diffusion theory code, NDT,' also written for this thesis, tests the

homogenized parameters and any method to update them. NDT has the ability to update

homogenized parameters during operation. Section 2.3 describes the nodal code in greater

detail. Several different flux approximations are available in NDT.
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2.2 ITC Description

The neutronics and lattice homogenization routines of JTC are described in this
section. As a general overview, the code uses the diamond difference approximation to
the discrete ordinates transpost cquationi However, it stores only the moments of the
angular flux in each coordinate directioﬁ. The clodc contains two levels of iterations. Inner
iterations update the moments of the angular flux in each coordinate direction and the
outer iteration is the power method for finding the eigenvalue. The code employs a
two-step acceleration® technique.

From Henry’, the discrete ordinates transport equation including spherical

barmonics is interpreted as
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where Y and Y are the spherical harmonics functi(jn and its complex conjugate,
respectively,
/ and m are indexes to the spherical harmonics,
d and ¢ are discrete directions,
¢ and @' are energy groups,
w1, is the weight associated with direction o',
K4 is the effective multiplication factor,
W is the discretized angular flux,
and £ =msin@ with u = cos @ .
The cfoss sections, O , are macroscopic Cross sections but are written using the lower
case sigmas to avoid confusion with summation signs. The spherical harmonic function

is

m_ (@) (- pm , 22
v [ L ]P, (4) exp(im®) @2)

where 2,7(u) is the associated Legendre polynomial, A direction, o, has known values
of 1, © and weights from the angular quadrature set.

Integrating equation (2.2) over all- © _mduccs the source term in the transport
equation to a one-dimensional form ( m 1s an-intégcr number ). This is equivalent to
setting /77 equal to zero. In this_-ca.éc, thé sphericﬁl hafmoﬁics function and its complex

conjugate reduce to

Li

. T




Vs = Vig = V2FT PPtug) = V21T Plu,) @3
causing the source term to become

G & L
B> vol 65+ 3 Y (2/+1)0) _,, Plun ¢, 2.4)

g =1 g=1/=0

where L is the truncation order of the scattering cross section and ¢’ is the moment of

the angﬁlar flux defined by
D _
¢ = E WP Yy - 2.3)
J=1

In JTC, the indexes ¢ and & iun the above three equations are only in the x direction.
The source term in equation (2.4) depcnds on ux and the x direction moments ( also a
function of x ). Therefore, for /m = 0, the source term has no y direction dependencies.
The y direction contributions appear for /77 # 0 in the spherical harmonics function. By
neglecting the y direction components in the scattering terms, a simple method emerges
for solving the two-dimensional discrete ordinates equ.ation. |

JTC employs equations (2.3) through (2.5) when solving for the angular fluxes and

their moments in the x direction. It finds the y direction angular fluxes and moments by
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rotating the axis. In this case, we ;cﬁiaCe the diréction cdsiﬁe p with € in cﬁuations (2.3)
through (2.5). This provides identical equatiens nbc‘essary for finding the y direction
angular fluxes and moments. Pivoting the d-ircct-idna.l sweeps is a common method
employed in many multidimensional boundary value problcr_hs. This approach is named
the ADI ( alternating direction implici®® ) method.

The purpose of JTC is a fuel assembly hofnogenization code. In such calculations,
there is a large amount of fission‘ througliﬁut the geomc;try. Thus, anisotropic scattering
is less important in these type problems than in deep penetration shielding calculations,
for example. This means that neglecting the /777 = O terms in the spherical harmonics
function is a reasonable assumption.

The outer iteration process converges to an eigenvalue, A, , using the power

iteration method. This process is expressed mathematically by

| W , +1 e P
— Y ¥ vogdg| =X Y vosd, - @8
Ko™ g3

ksf g=1

where the superscript o is the i_teration index. At the beginning of an iteration, the
method computes the total neutron source in the geometry from fission at iteration o and
divides by the eigenvalue of tﬁat iteration. The upcoming inner iterations use the
eigenvalue at iteration p. At the end of the inner iteration sweeps, the updated values

for the scalar fluxes ( index p + 1 ) cause the source term to change. Equation (2.6)
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finds a new value for the effective mult.,i_pl:i:c'atlion factor to use during the next inner
iteration sweeps. This method guarantees c_onve'rgé:nce to the largest eigenvalue.” As a
comparative measure, at the end of all outer itcraﬁons-, JTC computes the effective
multiplication factor by di\}iding all-ﬂéﬁuion- sour'ce:;s by the neutron losses.

The boundary conditibn; §l;eéiﬁéédon-.in-ﬁc is:'uniqﬁe. The Boltzmann transport
equation is a first order equation in cac‘ﬁ c'ocljrc_l.inaLe ‘;‘.lirection. If we solve the transport
equation in two one-dimensional steps, then the transport equation is a first order equation
in only one direction. Therefore, for ‘each discretized #héular flux, the transport equation
requires one and only one -_bqulll,d‘a:y- condition. The boundary condition is always a
specification on the incoming angﬁlar flux. Fof example, z; vacuum boundary condition
states that all incoming angular fluxes are equal to zero. With this condition, the user has
no control over the values of the outgoing angular fluxes. The geometry and cross
sections of the probiem influence the outgoing angular fluxes. A reflective boundary
condition states that an incoming angular flux, index o', is equal to its complementary
outgoing angular flux, index ¢ , where symmetry requires that the complementary angle
for w; is -, . Therefore, for a boundary, there are always f boundary conditions
where 7 is the S, order of the transport equations. In JTC, the user specifies values for
the odd moments ( f values for each boundary and energy group ) and relationships
between the incoming and outgoing angular fluxes at complementary angles are found.

For a symmetric quadrature set, the odd moments of the angular flux are found by
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2.7

Q'M mo

MdP/(#d) by-ty)

for / equal to the odd integers. This equation results in f equations for the moments

with -;- unknowns. When solved, 'the-complemcntary angles are in the form -

¥, - llja;' =C i ; 2.8)

where C is now a known constant. This boundary'conditiéﬁ fixes values for the odd
moments and yet allows freedom fﬁr the even moments. This is an important
characteristic because the even moments of the problem are not input variables
( particularly the scalar flux since it defines the flux discontinuity factor ). With these
boundary conditions, the user can control the shape of the angular flux profile while the
geometry and cross sections control the magnitude of the angular fluxes.

The inner iteration solves the one-dimensional discrete ordinates transport.equation
with a constant leakage term. The process begins by computing a source term that
remains constant throughout the inner iieration. The only part of the source term that
changes is the within group scattering terms and the within group fission. The constant

source term is
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off g=1 a=1 /=0
gng F*g
where
voa
¥y _
L) = fF,
! (2.10)
- Aql
E Wty E o - “
=1

The angular fluxes of group g will change at each inner iteration and change the
moments of the angular flux_ This results in'changi.ng the within group contribution to the

source term. The within group source is

1 PR
Ko vo, by - ; (2/+1)0 g,P/(y,d)d)g (2.11)

The complete source term is a function of the energy group and the angle, u, . Thus the

transport equation becomes
d ¢
Mo * Og¥ga = Sy 2.12)
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JTC uses the diamond difference approximation. This approximation relates the.angular
flux on the left boundary of the mesh, §~, to the angular flux on the right boundary of

the mesh, {’, as

t t .
o K - o 73 - 2.13
[?g*—ai]"’“*[g_d]"wsﬂd' -

The two complementary angles, ¢ and. o’ , are solved simultaneously for all mesh
intervals in a directional sweep. There are two neutron balance equations written for each
mesh interval, one for <0 and the other for x>0 . Adjacent meshes are coupled

together by requiring that the angular flux across an interface is continnous,
Vo= W - (2.14)

The boundary conditions prdvide relationships between the incoming and exiting angular
fluxes at the complementary angles. These equations provide a well-posed problem with
a unique solution. After JTC solves for the angular fluxes for all discrete angles, it finds
new moments of the angular flux and new within group source terms to continue the
inner iteration., | |

JTC writes the boundary condition and neutron balance equations in a manner to

aid in the solution of the angular fluxes. If written in its entire form, the problem matrix
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is extremely sparse. The matrix will contain ones along the diagonal, non-zero values
directly below the diagonal, and a non-zero value in the upper right comer. All other
values are equal to zero. This matrix is similar to a band diagonal matrix.*® We can easily
write a reduced matrix that implies the zero values and the diagonal values of one. JTC
also stores the term in the upper right corer of the problem matrix and implies its
location. We can easily solve the resulting matrix for the angular fluxes non-iteratively.

At the end of each outer iteration, JTC checks the flux convergénce. JTC stores
moments of the angular flux in each coordinate direction. This inc-:ludcs the scalar flux
( zeroth moment ) meaning that there are two scalar fluxes for each mesh and energy
group. If the problem has converged, then the scalar flux from the x direction iteration
will equal the scalar flux from the y direction. iteration. The maximum flux convergence
value is the largest deviation between the x and y direction scalar fluxes from all meshes
and energy groups or the largest change between two successive iterations. After the flux -
convergence is checked, JTC modifies the scalar fluxes so that they are equal in the two
coordinate directions.

The homogenization process is a noh—i_tcrﬁtive opératibn to find the equivalent
homogenizéd parameters. S¢cti0n 1.2 discussed how to obtain the homogenized
parameters. Equation (1.3) flux and volume weighs the '-h.etpro:gehcous cross sections and
diffusion coefficients to find | cqui?alcnt homogcniied‘ cross sections and diffusion
coefficients. The flux disconfinﬁity factors arc_ found by _.é‘ml:':_lqy_ing equation (1.7). The

surface integrated scalar fluxes from JTC are readily available. This provides a value for
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the numerator of equation (1.7). The currents along node boundaries are also readily
available. The current, diffusion coefficient, aﬁd nndal code flux approximation provide
a value for the denominator of equation (1 ’?) when employed in Fick's law of diffusion.

A source situation to test the accuracy of JTC is provided in the Argonne
Benchmark Book.*'** The geometry and material descriptions of the benchmark problem
are described in Appendix A. The reference solution is an g discrete ordinates solution
from the DOT-III code using a 4x4 mesh spacing. A map of the two group scalar fluxes
from JTC is also given in Table A.2. Comparison of JTC with the DOT-III solution
shows that JTC overpredicts the fluxes in the reéiqns th.?t contain the poison pin
( material 5.) for both energy groups. This results in an eigenvalue that is lower than the
reference solution ( i.e., the thermal absorption cross section is much larger than the
thermal production cross section for material 5 ). The remaining fluxes in the fuel pins
are in good agreement with both DOT-TY and TWOTRAN-1L. :Additionally, in the corners
of the geometry, JTC underpredicts the fast energy group fluxes énd overpredicts the
fluxes in the thermal energy group. Comparison of the TWOTRAN-II solution to the
DOT-II solution shows identical characteristics in the comers. Examining Table A.3
shows that JTC does not overpredict the fluxes by more than 1.2% or underpredict them
by more than 2.3%. We conclude from the benchmark study that JTC is well suited for

analyzing fuel assemblies.
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2.3 NDT Description
NDT is a multigroup, three-dimensional, Cartesian geometry, nodal diffusion
theory code designed to test methods to improve homogenized parameters. As an
overview, the code has four flux approximations available, it uses no acceleration
technique, and it adjusts homogenized parameters based on current-to-flux ratios.

The neutron diffusion equation is

32 5% oud ¢
Lo 7P Dg_a}_z¢9 ~ Do 2% * 999
(2.15)
1 & f e - s
T X D v, b, + D 0, b,
aff o=t &=1
where
) a & 5 - i
Oy = 0g + E'ag-g- . (2.16)

The source term and total cross section in equations (2.15) and (2.16) ioclude the within

group scattering terms for stability reasons. Neglecting-t}ﬁs term causes NDT to become

unstable and diverge away from a solution.
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NDT employs the transverse integration procedure.® This procedure breaks the
three-dimensional diffusion equation into three one-dimensignal equations with constant

leakage terms. The leakage term in the x direction is

LY =

g 'ﬁ'x(“’s} - g, ) 2.17)

KX

where the superscripts - and + refer to the left and right sides of the node respectively.
Currents moving to the right have positive values and currents moving to the left have
negative values. The y and z directions have similar leakage terms. With the transverse

integrated procedure, the diffusion equation becomes

—D_g,z_..¢ +ar¢ =
(2.18)
Ly o b+ " of é - LY L7
Txyz VO, by + Y Oy By - Ly - L
off g=1 g =1

for the x direction with similar equations for the y and z diréctjohs-.

The four flux approximations are the mesh centered finite difference, volume
averaged finite difference, quadratic polynonﬁzil,'and_ quattic polynbmial approximations.
In the mesh centered finite difference approximation, the flux in the center of the node
is assumed to equal the average flux of the node. In this case, the second order derivative

in the x direction is




e (200 - 4957 2 26;) 219

For the volume averaged finite difference approximation, the average flux in the node is

a volume weighted quantity found from the values of the two edge fluxes and the center

flux. The average flux for this assumption is

where ¢; is the center flux value. It follows that the second order derivative is

1
(Ax)®

(4, - 893 + 49;) . @.21)

The polynomial used in the quadratic flux approximation is

avs + - . - , ave 2
‘pg[ﬁ] =% (¢9‘¢g)‘é§, +{#;+05-205 )[B[A_ﬁ,] _Z] 2.22)

~ leading to a second order derivative of
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(60, - 12¢2° + 6¢;} . @23

The polynomial used in the quartic flax approximation is
X + - X . _ X 2 1
2gs) 97 (9 - (950 -2¢;")(‘"‘[A_x] ‘ z]
alt x¥ 1( x slf x¥ 3/ x2 1
%[[E?J z[z&]] ' “’9[(’5}] ) 'Ed']

where the terms ¢; and ¢: are the fourth and fifth polynomial coefficients, respectively.

This polynornial leads to the second order derivative

1
(Ax)?

(605 - 12¢5° + 60, + 247) . 2.25)

The moments weighing technigue® is a method to find the fourth and fifth polynomial
coefficients. In the technique, the spatially dependent neutron balance eqﬁation is
multiplied by the first moment, EX; , and integrated over the width of the node. Then, the
spatially dependant neutron balance equation is fnultiplicd by the second moment,

2
3 (i] - % and again integrated over the width of the node. The transverse direction

Ax
leakage terms are expanded into quadratic polynomials for the integration. This technique
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results in a representation of the flux ﬁro'ﬁlp actoss; the node that is superior to the finite
difference and quadratic polynomial approximations.”

Adjacent nodes are coupled together by the continuity. of flux condition and the
continuity of current equation. The continuityl of flux equatioﬁ is that shown by

equation (1.9) or

f.;./q’;f = f;;m ‘P_;;m (2.26)
where / and /+ 1 are node indexes. The continuity of current equation is
Jgi = Jgim 2.27)

Equation (2.27) is expanded using Fick's Law to rid the equations of net currents in favor
of fluxes and, in the quartic polynomial case, the fourth and fifth polynomial coefficients.

The continuity of current equation becomes
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7 D, . ;
| 407+ 207 - 677 ) = - (6977 - 440, - 29, )

i #+1

D

+ - awe 1 4 + 1 51 _
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Dy ave - * 1 44 1 45
—Ax, ( 6¢ﬁ1 - 4¢;‘«1 - 2¢;‘~1 + E‘f’m - ;¢;’4 )

1

for the mesh centered finite difference, volume averaged finite difference, quadratic
polynomial, and quartic polyﬁomial approximations, respectively.

The boundary condition can be either zero scalar flux or zero net current. The
boundary condition equations, coupling equations, and neutron balance equations form a
well-posed problem with a unique solution for the scalar fluxes. The power method
described in the previous section is also used in NDT to iterate to the largest eigenvalue,
K,y. For comparison, at the end of the outer iterations, NDT aiso computes the
multiplication factor by dividing the production of neutrons by the absorption and leakage
of neutrons. When the solution has converged, the multiplication factor from the two

different methods should be equal.
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At the end of a series of outer iterations { flux and eigenvalue iterations ), NDT
has very good estimates for the currents at the node boundaries and the average fluxes
within the nodes. This information is used to adjust the -hbmﬁécni'zcd parameters to more
accurate values based on equation (1.13) w;th prcd‘étermined correlation coefficients. After
making the adjustments, the flux and eigenvalue .itcration process continues using the
improved homogenized parameters.

Benchmark results for NDT are provided in Appendix B. The .benchmark problem
is the three-dimensional IAEA LWR model*' The reference solution to the benchmark
problem is a fine mesh VENTURE solution ( finite difference ). Also given is the solution
from QUANDRY.' This solution is an analytic solution to the nodal diffusion equations.
For still another comparison, the IQSBOX solution® to the benchmark problem is
provided in Appendix B. This solution is a fifth order polynomial flux approximation.
Both QUANDRY and IQSBOX use the quadratic transverse leakage approximation. NDT
results are provided in Table B.2 along with the VENTURE, QUANDRY, and IQSBOX
solutions. Examining Table B.2 shows excellent agreement in the multiplication factor and
the fuel assembly peaking factors for the quartic polynomial approximation in NDT.
However, the finite difference solution and the quadratic solution from NDT both show
larger errors in the multiplication factor and show an in/out flux tilt. These efrors are due
to a combination of the low order flux approximation and neglecting the transverse
leakage shape. The guartic polynomial flux approximation in NDT using the quadratic

transverse leakage shape does show resulis consistent with the other documented
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solutions. The NDT quartic polynomial solution shows a slight infout flux tilt but its
cause is due to the boundary condition in NDT. All three NDT solutions use a zero scalar
flux boundary condition for the external boundaries where the benchmark problem
specifies no incoming current. Therefore, the scalar fluxes at the external boundaries are
lower in NDT than the other solutions. This propagates through the geometry causing the
power peaking factors in the outer fuel assermblies (0 be low and causing them to be high

in the center of the reactor core.

2.4 Conclusions for the JTC and NDT Computer Codes

The neutronics of JTC and NDT lllalve" chlfi présented in this chapter. Benchmark
problems for the two codes demonstrate that both. codes are sufficiently accurate for the
analysis work performed in this thesis. JTC shows errors in strong absorber fuel pins for
two-dimensional geometries. However, in one-dimensional situations, the streaming term
and scattering terms in JTC do not contain any approximations to the discrete ordinates
equations. The NDT results show that the finite difference and quadratic polynomial flux
approximations are inaccurate, but the quartic polynomial flux approximation is accurate.
These results are used in Chapter IV to illustrate the robustness of using correlated
homogenized parameters.

An important feature of JTC is the flexible boundary conditions. The benchmark
problem does not test to ensure that the boundary condition is correct, however, reference

problems wuvsed in Chapter III do. The reference problems in Chapter III are
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one-dimensional heterogeneous regions. At interfaces of adjacent heterogeneous regions,
the odd moments are recorded and used as boundary conditions. Analysis of the
geometries in Chapter III prove that the flexible boundary conditions do reproduce the
reference results for one-dimensional cases.

Reference problems used in Chapter IV show consisténcy between JTC and NDT.
The geometries of Chapter IV were used to engure that homogenized parameters
computed in JTC will reproduce rcfcré_t_icc results when used in NDT. This simply
exhibits that NDT employs the homogcnizéd pafameters in a mcthoﬁ compatible with how

JTC computes them.
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CHAPTER III

DEVELOPMENT OF A METHOD TO IMPROVE HOMOGENIZED
PARAMETERS IN A ONE-DIMENSIONAL GEOMETRY

3.1 Chapter 1 Obijectives

A method is developed in this chapter to obtain approximate correlations for
homogenized parameters for one-dimensional geomen'ies". To explore this method, two
models are chosen which have certain characteristics common to BWRs and PWRs. The
basis of the method relies on the gcnerai ability to correlate homogenized parameters
rather than to derive a correlation through theoretical analysis; Thlerefore, the approach
taken is to show that a general polynomial correlation w;vill reduce to a simple form
without a great loss of accuracy.

In the cases examined in this chapter, the lattice homogenization solution is an 84
discrete ordinates calculation using P, scattering cross sections and four meshes per

centimeter. The flux approximation in the nodal code is the quadratic polynomial,

]
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where / is the node width. Equation (3.1) defines the edge fluxes to be

- ¢( =—-;-) (3.2)
ool

These relations are necessary to find the quadratic coefficients 4 and B . The quadratic
coefiicients are shown explicitly in equation (2.22). The homogenization process requires
kﬁowledge of the nodal code flux approximation only to compute values of the flux
discontinuity factors. As seen in the denominator of equation (1.7), the flux discontinuity

factor is dependent on the nodal code flux approximation.

32T sf Geometries nd Referénce Solutions.

The characteristic chosen to represent BWR:and PWR fuel assemblies is the water
gap width between the fuel assemblies. The BWR emulation contains a two centimeter
water gap at the interface between adjacent fuel assemblies ( one centimeter in each of
the adjacent assemblies ). The PWR emulation does not contain a water gap between
adjacent assemblies. Both situations also contain heterogéneitics { a neutron absorber and
a moderator } designed to give a distinctive flux shape in the interior of the center fuel
assembly and, therefore, resolt in unique flux and volume weighted homogenized cross

sections.

33




The geometries for the two problem situations and the material cross sections used
in the various regions within the geometry are given on the following pages. In both
geometries, the two outer regions serve as buffer regions to provide realistic angular
fluxes ( and therefore moments of the angular flux ) at the interface between assemblies
and provide a global flux tilt-. This supplies non-trivial .intcrface conditions for the
boundaries of the center assembly. Correlations are developed only for the center

assembly.
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Figure 3.1. Reference 1-D BWR Geometry.
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Figure 3.2. Reference 1-D PWR Geometry.
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Table 3.1. Reference Transpb_f;t .Théory- Cross Sections for the

One-Dimensional Studies. cm™ ( No upscattering )

Material

. VI

Group I, Z;
1 1 1.016e-02 2.876e-03 7.346e-03
(Fuel) 2 1.003e-01 6.171e-02 1.504e-01
21 939903 22Me03 5872603
{Fuel) 2 7.989e-02 4.346e-02 1.05%e-01
3 1 oasled o0 o
{Water) 2 3.63Ge-02 0 0
(Absorber) 2 3.398e-01 0 0
Scattering Energy Group
Material Order 1t01 lto2 2102
1 Fy 5.087e-01 1.557e-02 1.150e+00
{Fuel) P 1.706e-01 3.981e-03 3.089e-01
P, 5.893e-02 0 ]
P, 1.961e-02 0 0
2 TP 509901 L6402 LITIe0d
(Fuel) P 1.712¢-01 4.170e-03 3.087e-01
P, 550802 0 0
P, 1.960e-01 0 0
EN P 601801 3570002 20056400
(Water) P, 2.43%-01 7.074e-03 5.550e-01
P, 5.407e-02 0 0
P, 3.369¢-03 0 0
4 R 43501 1080e02 874501
{Absorber) P 1.39%¢-01 2.103e-03 2.662e-01
P, 4.523e-02 0 0
P, 9.274e-03 0 0
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The reference scalar flux prbfilésfshowni_ in Fié:ufcs 3.3 and 3.4 are necessary to
compute the reference homogenized parameters. The heterogeneous cross sections and
diffusion coefficients are flux and volume weighted to 6Etain homogenized parameters
and eqﬁation (1.7} specifies how to compuie th_c reference ﬂﬁx- discontinuity factors. The
reference homogenized parameters are provided in Table 3.2. Besides reference
homogenized parameters, the ratios of.the edge flux to the avelrage fiux for the center
region is also furnished in Table 3.2. The vsefulness of the edge-to-average flux ratios is
discussed in the Section 3.4.

From the reference solution, the odd moments of the angular flux at the boundaries
of the center region are given in Table 3.3. These odd moments can serve as boundary
conditions to one region problems. For example, in one-dimensional cases only, we can
use JTC to regenerate the reference homogenized parameters without the two outer buffer
regions shown in Figure 3.1 or 3.2. This is achieved by using the odd moments shown
in Table 3.3 as boundary conditions to the center assembly. This exercise serves as a test
to ensure that the boundary condition for JTC discussed in Chapter II functions correctly.
The average fluxes in the center regions is also given in Table 3.3. These values are

necess for normalization.
ary
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Figure 3.3. Reference Scalar Flux Profile for the BWR Geometry.
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‘Table 3.2 Reference Homogenized Parameters for the Sample BWR and

PWR Geometries.

BWR °

Group D (om) I, (em™ . .E.f (cm™) - vI; (cm™ I, ., em™
1 - 140533 -8:‘_596386-03 "2.32471e-03 ' 3.93?876-03 1.85594¢-02
2 0.39892 901053e-02  4.54538¢-02 110780601
FDF Edge-to-Average Flux Ratio
Group Left Right Left - Right
1 0.93597 0.89776 1.07491 0.78765
.2 1.56928 1.58288 1.82868 1.4I-8345
PWR
Group D (cm) Z, (cm’™) 2, em™ vE, (cm™) Z, .. em
1 1.35796 9.85700e-03 2.68851e-03 6.86710e-03 1 .503558-02
2 0.43343 1.03593e-01 5.76834e-02 1.40586e-01
FDF Edge-to-Average Flux Ratio
 Group Left Right Left Right
1 | 1.01%20 1.00857 1.14416 0.89275
2 0.99639 0.98442 1.09943 1.02672
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Table 3.3. Reference Odd Momcntsblf&bd Angular Flux at the Boundaries
of the Center Region and Referénce Average Fluxes.

BWR PWR
Moment Group Left o o Right | Left Right
1 1 22994602 1277876.02 1.75466¢-02 1.44103¢-02
2 T200142e03°  309R04E04 16885703 -127995e-03
3 1 103634604 -3.584096-04 2.29030e-04 -1.23542¢-03
2 _1.80008e-05  -1.03898-05 15635305 2.70164e-04
5 1 798326605 -1.28025¢-05 | _-1.35203e-os 5.03508¢-04
2 3TI6IE06 654685006 -5.064056.07 -1.049586-04
7 1 401471¢-05 4.52050e-05 7.419942-06 -2.98796e-04
2 -100898e07  -261790e07  -2.90088¢-07 6.47520-05
9 1 208952¢-05  -3.99888¢-05 -1.398226-06 2.22913¢-04
2 46712707 -8.57474e07 2.37903¢-08 -4.95458¢-05
1 ] 1.65230¢-05 344251605 5.21561e-07 -1.95539¢-04
2 3.94900¢-07 7.63833¢-07 -2.53980e-09 4.36529¢-05
13 1 2.13205e-05 -3.02100¢-05 24273706 2.00342¢-04
2 44054108 -1.07379-07 5.63131e-08 -4.39385¢-05
15 1 2.60125¢-05 1.06828¢-05 -1.79550¢-06 -2.49298¢-04
2 -1.19097¢-06 -1.5275%-06 4.91183e-07 5.35428¢-05
Average Flux
1 7.04241¢-01 7.43327e-01
2 1.46832¢-01 1.16972¢-01
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3.3 Apalysis Procedure

The analysis procedure is to attempt to reconstruct reference homogenized
parameters by using initial homogenized parameters and correction components. Zero net
current ( or reflective ) boundary conditions are placed on the boundaries of the centér
region shown in Figures 3.1 and 3.2. This will gchératc, in JTC, the initial homogenized
parameters for the center node for each of the two geometries. These values are provided
in Table 3.4,

The correction component for a hoﬁlogeniZed- parafnetcr is defined as a change
from the initial homogenized parameter caused by placing odd moments of the angular
flux on the node boundarics_. By defining the correction comjaoncnt in this manner, the
correction component can inctude contributions:

¢ from polynomial terms in a general conclati(;n,

o from using higher ordered odd moments fof the boundary condition, and

e from cross product terms involving different energy groups and different node

faces.
‘The correction component is a sum of different combinations of the contributions listed
above. By defining the cormrection component this way, we do not have any information

as to how the various effects interact with each other or how much each effect contributes

to the correction component. However, it does provide a means to figure out how much

neglecting a certain effect has on the reconstructed homogenized parameter.
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The reconstructed homogenized parameter is the initial homogenized parameter
plus the correction component ( or components ) required to re-establish the reference
cwrrents on all node surfaces and energy groups. If a certain effect is neglected, then
summing the initial homogenized parameter to the proper correction components will
result in 2 reconmstructed homogenized parameter that is not equal to the reference
homogenized parameter. The difference between the reconstructed homogenized parameter
and the reference hoﬁogenjzed parameter is related to the error. Thus, the error in a

homogenized parameter is given by

Reference - Reconstructed (3.3)
Reference '

Enor =

If the error is small, then the effect being tested is weak and the general polynomial

correlation will reduce to a simpler form.




Table 3.4 Initial ( Infinite Lattice ) Homogenized Parameters for the
Sample BWR and PWR Geometries.

BWR
Group D (cm) Z, {em™) I, (cm™) vE; (cm™) 2, (cm™)
1 1.40533 §.69485¢-03 2.33061e-03 5.95295¢-03 1,85848e-02
2 (.39892 _ 8.98508e-02 4.57608e-02 1,11529e-01
FDF Edge-to-Average Flux Ratio
Group Left Right Left Right
1 0.86899 0.95108 0.86899 0.95108
2 _ 1.45919 1.71854 1.45919 1.71854
PWR
Group D (cm) Z, (cm™ 3 (em™) vE, (cin™ Iﬁ, (g (cm’™Y)
1 1.35796 9..835798-03 ' 2.68823e-03 6.86640e-03 1.60953e-02
2 043343 1.03016e-01 5.75925¢-02 1.40365¢-01
FDF Edge-to-Average Flux Ratio
Group Left Right Left .. Right
1 0.96489 1.0575%4 - 096489 . 105794
2 0.90820 1.09680 0.90820 1.09680
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Examining the root mean square ( RMS ) error for distinct categories of
homogenized parameters gives a general indication for the strength or weakness of a
particular correlation event. There are three distinct categories of homogenized
parameters; cross sections, flux discontinuity factors, and edge-to-average flux ratios from
the lattice homogenization solution. The RMS errors for each category of homogenized
parameters for both test geometries are presented in the text of this chapter and individual
errors of the homogenized parameters are listed in tables in Appendix C. The RMS errors
in the initial homogenized parameters are shown in Table 3.5. RMS errors in the cross
section category include errors in the absorption, production, and downscatter cross
sections only. The error in the fission cross section is identical to the error m the
production cross section, therefore, including both would be redundant. Errors in the
diffusion coefficients are excluded from the RMS errors. Using the ideas presented in
Section 1.2 for formally exact homogenization, we can explicitly alter the diffusion
coefficient to the reference diffusion coefficient and allow the flux discontinuity factors
to adjust accordingly. As addressed in Section 1.2 for generalized equivalence _I:hcory,
there exist an infinite set of diffusion coefficients and flux discontinuity factors that can
all produce identical results. However, it is incorrect to compare the different sets of
diffusion coefficients and flux discontinuity factors and form errors if all sets produce the
same result in a nodal analysis. Accordingly, to generate errors for the flux discontinuity
factors, the analysis procedure requires the diffusion coefﬁcichts to equal the reference

diffusion coefficients. The diffusion coefficients in Table 3.4 were 'manu'ally changed to
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the reference values. Changing the diffusion coefficients cannot affect the initial flux

discontinuity factors because, with reflective boundary conditions, the nodal flux shape

is always flat. This causes the initial flox discontinuity factor to equal the initial

edge-to-average flux ratio.

Table 3.5. RMS Errors in the Initial ( Infinite Lattice ) Homogenized

Parameters.

BWR
Cross Sections 0.3529%
Flux Discontinuity Factors 7.2311%
Edge-to-Average Flux Ratios 19.0849%
PWR
Cross Sections | 0.3226%
Flux Discontinuity Factors 8.0780%
Edge-to-Average Flux Ratios 15.3052%
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The coupling characteristics ( cncrg‘y' gr‘ouﬁ and node face ), boundary condition
specification, and polynomial fitting are examined in this ;:hiibtcr. We can avoid
assumptions in the analysis procedure by ﬁndi‘ng errors from these effects in the order
mentioned. By using all ithe odd -mo_micrhts as boundary c_ondjtior'ls.for the coupling
characteristics, there are no approximations in the boundél;y coﬁdiﬁons or any polynomial
fit associated with the correlation. Thus the correction t_compoqcnts ‘have lumped these
effects into one term. Similarly, by using the reference currents only, we can analyze
approximations for boundary conditions without any information of an accurate
polynomial fit for the homogenized parameters.

Referring to equation (1.13) shows that thé cumrent is normalized to the average
flux. This choice of normalization allows the correlation to perform at all power levels.
However, therc. are other choices to consider. For instance, the scalar flux on the
boundary of the node could normalize the current and other odd moments rather than the
average flux of the node. However, this choice of normalization is unsuitable because,
without an exact reference boundary condition ( i.e., a current and higher odd moments ),
the edge flux is likely to have significant errors that can easily propagate in the
correlations. A simpler view of this is that the edge fluxes are much more sensitive to a
boundary condition than the average flux. Another choice is to normalize the current and
Iodd moments to a reaction rate. However, normalizing the current in a region such as the
reflector would create problems with this choice. The reflector has no power output from

fission and the absorption reaction rate is very small. Therefore, this choice of
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normalization i1s not the best choice either, Thus, the choice of normalization shown in

equation (1.13) is the best decision.

3.4 Coupling Characteristiés
Ener oup Couplin |

The coupling relationship .Ibetween the fast and th'er_rnﬁl energy groups of the two
group problems is examined in this segment. We. can find the correction components
associated with the fast energy group by using the refcreﬂée bbundary conditions for the
fast energy group on both surfaces and reflective boundary conditions for the thermal
energy group on both surfaces. A similar procedure finds the correction components
associated with thermal energy group cwrrents. The correction components include
coupling between the two node faces so that any node face coupling emors are not
present.

Errors in the reconstructed homogenized parameters for both geometries are
displayed in Table C.1. Trends in Table C.1 are also seen in Table 3.6 below. Examining
Table 3.6 sho»;;s that the RMS errors of the reconstructed homogenized parameters are
less than errors in the initial homogenized parameters seen in Table 3.5 for all three
categories of homogenized parameters. In comparing Tables 3.5 and 3.6, the errors in the
homogenized cross sections and in the edge-to-average flux ratios dramatically decreased

by a factor of 50 and higher. However, the flux discontinuity factors moderately improved




by a factor of 10 or less. This small improvement in the flux discontinuity factor suggests

that the fast and thermal energy groups do contain significant cross product terms.

Table 3.6. RMS Errors in the Energy Group Reconstructed Homogenized

Parameters.
BWR
Cross Sections | 0.0053%
Flux Discontinuity Factors 1.4065%
Edge-to-Average Flux Ratios 0.2163%
PWR
Cross Sections 0.0065%
Flux Discontinuity Factors 0.8497%
Edge-to-Average Flux Ratios 0.2081%

Expanding equation (1.7} illustrates a major cause of the energy group coupling
for the flux discontinuity factors. Since equivalence theory states that the average flux in
the nodal code must equal the average flux of the reference solution, we can divide the
numerator and denominator of equation (1.7) by the average flux for energy group g as
seen in equation (3.4). The numerator of equation (3.4} is the edge-to-average flux ratio
from the lattice homogenization code. This value depends on the current-to-flux ratios
from all energy groups and node faces. The denominator of equation (3.4) is derived

directly by applying Fick's law to each surface of the node. Thus, the denominator of
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equation (3.4) is also a function of the current-to-flux ratios. Dividing the numerator by

the denominator produces cross product terms between the different current-to-flux ratios.

=279 few (3.4)

Fick's law provides the relationship between the current on 2 node boundary and
the flux values for a given nodal flux approximation. For the quadratic polynomial of
equation (3.1), the denominator of equation (3.4) for the left or right boundary of the node

is

_.;‘_ =1 + h 2 J-g » J;'
¢aﬂ9 6[)9 ¢am ‘paw
g g g (3.5)
- . A _ . Y
Py 4 BP0 Ye
¢g" 6Dyl p5°  o3°

where /7 is the width of the node, - represents the ieft boundary, and + represents the
right boundary.

Correlating edge-to-average flux ratios from the lattice homogenization procedure
and using them to find the flux discontinuity factors allows us to easily account for the
dominating cross product terms in the flux discontinuity factors. The procedure to
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improve the flux discontinuity factors is demonstrated in Table 3.7 and the resulting errors
that remain in the flux discontinuity factors are given. The first column of Table 3.7 is
the edge-to-average flux ratios for a nodal code using the quadratic flux polynomial
( equation (3.5) } for the two reference geometries. Values for the currents and average
fluxes are provided by Table 3.3 and the diffusion coefficients are from Table 3.2. These
values and the reconstructed edge-to-average flux ratio from the lattice homogenization
are employed in equation (3.4) to produce the second column; the alternative method for
reconstructing flux discontinuity factors. Errors in the flux discontinuity factors from this
alternative approach are shown in the third column. The error column clearly shows that
flux discontinuity factors found by employing equation (3.4) are- much lower than those
found by reconstructing the flux discontinuity factors tiifecﬁy:-Us_ing this procedure has
reduced the RMS error of the flux discontinuity factors to "O..2:1 63%K -and 0.2081% for the
BWR and PWR geometries, respectively. Since the denominator is a known function
derived from Fick's law, the error in the flux discontinuity factor is equal to the error in

the reconstructed edge-to-average tlux ratio.
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Table 3.7. Flux Discontinuity Factors and Errors Computed by the
Alternative Method for the Energy Group Coupling.

Face Edge-to-Average

(Group)  Flux Ratio (Nodal)  [DF % Error
BWR

Left (1) 1.14845 0.93674 -0.0828%

Right (1) 0.87736 0.89686 0.0997%

Left (2) 1.16530 1.57380 -0.2884%

Right (2) 0.93718 1.57820 0.2957%
PWR

Left (1) 112261 102024 0.1018%

Right (1) 0.88516 100741 0.1147%

Left (2) 1.10341 0.99918 -0.2800%

Right @) 104297 0.98179 0.2669%

Other than improving the accuracy' of the flux discontinuity factors, correlating the
edge-to-average flux ratios from the lattice homogenization code shows émcr benefits
over directly correlating the flux discontinuity factors. The flux discontinuity factors are
dependent on the flux approximation used in the nodal code. However, the
edge-to-average flux ratio correlations from the lattice l;omogenization. are not dependent
on the nodal code flux approximation. This means that any n'odal code flux approximation
can use the comelation. The nodal code can readily figure out the denominator of
equation (3.4) for any nodal code flux approximation and in turn, compﬁte the appropriate
flux discontinuity factor. Therefore, correlating the edge-to-average flux ratios allows for

correction of the nodal code flux approximation.
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Another advantage of this approach is that_tﬁé flux discontinuity factor can correct
for any uncertainty in the diffusion coefficient. The ed.ge-to-a_ver_age- ﬂpx ratio correlation
found from the lattice homogémizatiop is also indepeqdent of the diffusion coefficient.
However, the edge-to-average flux ratio frnfﬁ the nodal code is dependent on the diffusion
coefficient. Again by equation (3.5), changing the diffusion coefficient will change the
value of the flux discontinuity factdr. |
Node Face lin

This segment is similar to the. pre¢¢djmg segment except tfhe coupling is between
the two opposite faces of the node rather than the energy groups. To avoid energy group
coupling errors, the energy groups remain coupled together in this segment. Correction
components are found for the left and right node faces by using appropriate combinations
of reference and reflective boundary conditions. Errors in the reconstructed homogenized
parameters are displayed in Table C.2 and the RMS errors of the three different categories
of homogenized parameters for both geometries are displayed in Table 3.8.

Comparing Table 3.8 to Table 3.5 shows that errors in the homogenized cross
sections and edge-to-average flux ratios significantly reduce for both geometries while the
flux discontinuity factors again only moderately reduce. As in the energy group coupling,
this suggests that the node face dependency in the cross sections and edge-to-average flux
ratios is weak. However, there are significant cross product terms in reconstructing the

flux discontinuity factors directly.
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Table 3.8. RMS Errors in the Node Face Reconstructed Homogenized

Parameters.
BWR
Cross Sections ' 0.0053%
Flux Discontinuity Factors _ 0.5743%
Edge-to-Average Flux Ratios | 0.0684%
PWR
Cross Sections 0.0023%
Flux Discontinuity Factors = o " - 09703%
Edge-to-Average Flux Ratios . . . o 0.0941%

Correlating the edge-to-average ﬂux. ratio;; overthc ﬂl-ix disconﬁnuit’y faétors is
also supported by the trends seen in Table 3.8. As before, using cormelated
edge-to-average flux ratios in equation (3.4) results in an easy method to include cross
product terms in the flux discontinuity factors. As seen in Table 3.9, the RMS errors in
the flux discontinuity factors will easily reduce to 0.0684% and 0.0941% by this approach
for the BWR and PWR geometries, respectively. As before, this approach to find the flux
discontinuity factor includes effects of the nodal code flux approximation and diffusion

coefficient.
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Table 3.9. Flux Discontinuity Factors and Errors Computed by the
Alternative Method for the Node Face Coupling.

Face Edge-to-Average

(Group)  Flux Ratio ( Nodal ) FDF % Error
BWR
Left (1) 1.14845 0.93517 0.0858%
Right (1) 0.87736 . 0.89822 0.0516%
Left (2) 1.16530 1.56783 0.0924%
Right (2) 0.93718 158309  -0.0134%
PWR
Left (1) 1.12261 101785 0.1331%
Righe (1) 0.88516 100967 . = -0.1091%
Left (2) 1.10341 0.99573 0.0655%
Right (2) | 1.04297 098480  -0.0386%

In conclusion, correlations cannot accurately model the.:'éffects that current-to-flux
ratios have on the flux discontinuity factors dirécr,;ly. ‘However, an accurate approach to
find the flux discontinuity factors is to correlate the edge-to-average flux ratio from the
lattice homogenization calculation. This approach is very successful because it is not only
accurate, but it accounts for the flux approximation in the nodal code and the diffusion
coefficient used for the node. The edge-to-average flux ratio from the nodal code is

readily available for use in equation (3.4).




3.5 Boundary Condition Approximations

In the preceding section, all odd moments of the angular flux from the reference’
calculations provided the boundary conditions for the center region of the two sample
geometries. However, if the reference solution is not known, neither are the higher
ordered odd moments of the angular flux, particularly the third moment. The third
moment plays a more important role in the angular flux shape than the remaining higher
odd moments. The boundary condition thﬁt best duplicates the third moment of the
angular flux ( and higher odd moments ) and con_chilenﬂy the scalar flux for the sainplc
BWR and PWR geometries is explored in this -secticm:

Common boundary conditions in transport theory codes are reflective, periodic,
vacuum, albedo, and white boundary c'ondil;ions.-*""'f""”.t_)nly one of the above boundary
conditions can create a current on one surface of a node: "R_c'ﬂectivc boundary conditions
specify that the angular flux that exits a boundary-. returns into the boundary at its
complementary angle, This means that the angular flux is éymmetric and, because of the
symmetry, this condition cannot create any odd moments of the angul_ar flux. Periodic
boundary conditions cannot create a current on only one face of the node. As such, we
cannot decouple the node face dependencies of the current and other odd moments to
form a correlation. We can view a vacuum boundary condition as an albedo condition that
is equal to zero and, therefore, it will not be used. Fuﬁhennore, a vacuum boundary
condition is unrealistic for fuel lattices. A white boundary condition finds an incoming

angular flux ( constant for all incoming u ) that does not result in a current. Therefore,
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it is also of no use for this analysis. Only the albedo boundary condition can create a
current on only one face of the node.

The boundary conditions can be written in a functional form, Y (u)., and
integrated to find values for the moments of the angular flux. The integral that defines

the moments of the angular flux is

(k) Poiu)du | (3.6)

%-.‘_A

¢, -

1
2

-

where @, is the 7% moment of the angular flux and A, is the 7% Legendre
polynomial.”” The shapes of the angular flﬁx_rca'in be described using common geometry
functions in x-y coordinates and then transfonned to polar coordinates to arrive at an
expression for §{u). The relations in:equation..(3.7)_ are used to convert from x-y to

polar coordinates.

X=1U(p)cos® = Y (u)u

Y= W) sing = g (up/1-42

(3.7)

In this section, characteristics of the albedo boundary condition are examined
followed by a comparison of the albedo condition to the rcfcrcnée angular flux shapes on
the node boundaries. The albedo is shown to be insufficient for creating a curreht and
accurately modelling the node edge scalar flux. Lastly, a boundary condition is proposed
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in this section that creates a current and provides good approximations to the node edge
scalar flux. Accurately predicting the scalar flux on a node boundary for a given current
is a crucial task because the node edge scalar flux defines the flux discontinuity factor.

'Albedo Boundary Condition

The albedo boundary condition specifies that a known portion of the current that

exits a boundary reflects back into the medinm. Mathematically, this is

€ = b (u) _ (3.8)

Three possible shapes for the albedo condition are shown in Figure 3.5. The dotted lines

represent a constant value and the solid lines represent albedo shapes that are elliptic.
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Circular Albedo

Flattened =Eiﬁp1tiq.Albedo

Figure 3.5. .'.Polar Plot of Possible Angular Flux Shafpes
for an Albedo Boundary Condition.
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We can define each shape in Figure 35 by the ellipse

(_{]2+(Z]2=1 3.9)
al b

¥ () = [_1_ , [L_L]#z)'% _ (3.10)
b '

The constants & and b_ are different for >0 and <0, but the albedo condition
( equation (3.8) ) forms a relation between the values. Also, for an upward stretched
elliptic albedo, a< b; a circular albedo, & = &; and a flatened elliptic albedo, a> b.
All three shapes show a current arbitrarily moving to the right. Integrating the
angular flux shape given in equation (3.10) in equation (3.6) shows that the second
moment is negative for an upward stretched ellipse, zero for the circular ellipse, and
positive for the flattened ellipse. However, the important feature of the shapes is the value
of the third moment relative to the first moment. Regardless of the value of the albedo,
the ratio of the third moment to the first moment is constant for any given & and b

constants. The ratio of the third moment to the first moment ranges from -0.1 for a
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flattened ellipse to -0.4 fbr an ﬁpward s.tr.ct.':ch:cd éilipgc. The ratio is -0.25 for the circular
albedo shape. These values cover a wide range of normalizéd current values.
Reference Angular Flux Shapes on the Nodt;, Bl_oundaries

The solutions in this chap;er used an S,s angular guadrature set which provides
se_vcral angular fluxes to form a polar plot. Then, it is easy. to eic;amine the polar plot ﬁnd
learn characteristics of the angular flux shape in the sample BWR and PWR geormetries.
This information will reveal if we expect an albedo to reliably serve as a boundary
condition.

Figures 3.6 and 3.7 show polar plots of the reference angular fluxes for the BWR
and PWR geometries, rcépcctivc:ly. The dotted line in each drawing is a constant value
equal to the scalar flux for the node face and energy group. The angular fluxes are shown
for both energy groups and on both node faces. In each drawing, the first angular flux
points to the far right and the sixteenth angular flux points to the far left. The eighth and

ninth angular fluxes point upwards.
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Group 1, Left Face Group 1, Right Face

Group 2, Left Face Group 2, Right Face

Figure 3.6. Polar Plots of the Reference Angular Fluxes
on the Node Surfaces of the BWR Geometry.
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Group 1, Left Face Group 1, Right Face

Group 2, Left Face Group 2, Right Face

Figure 3.7. Polar Plots of the Reference Angular Fluxes
on the Node Surfaces of the PWR Geometry.




In the albedo condition shown by equation (3.8), the ratio of the first to sixteenth
angular flux will equal the ratio of the eighth to ninth angular flux. In the BWR
geometry, the only angular flux shape in Figure 3.6 that shows this characteristic is the
thermal energy group on the right surface. Ho}vcvér, t‘his shape is nearly symmetric
meaning that all odd moments are approxi‘ma;t_,cly equal to zero as seen in Table 3.3. In
the other three angular flux shdpés of the BWR geometry; the ratio of the eighth and
ninth aﬁgular fluxes is appmximatély équ_al to- one while the ratio of the first and
sixteenth angular fluxes are. not. This is not a (ﬁharac'téristic of.- the albedo boundary
condition and, therefore, fhc albedo boun;ﬂary -cOn&ition is not expected to create a current
and adequately predict the scalar flux and other odd momerits bf the angular flux.

Examining the angular flux shape o_h the su'rfa_cés of thé PWR geometry shows-that
the left face does not exhibit characteristics of an albedo. boundary condition, however,
the right face does. The angular flux shape on thc.right face of the fast energy group
shows some resemblance to the upward strcfched ellipse seen in Figure 3.5. The angular
flux shape for the thermal energy group on the right face is similar to the circular albedo
shape. Therefore, the albedo boundary condition might be sufficient to model the right
face of the PWR, but it will not provide a good boundary condition for the left boundary.

Nevertheless, the individual errors of the homogenized parameters found by using
albedo boundary conditions to reproduce the reference currents are listed in Table C.3.
The flux discontinuity factors are excluded from Table C.3 because the edge-to-average

flux ratios are used to arrive at the them. To avoid energy group and node face coupling
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errors, this analysis created the currents in both energy groups and on both surfaces
simultaneously. Examining the RMS errors in Table 3.'10 shows that the errors in the
CIOsS sccli-ons are small, but the errors in the edge-to-average flux ratios are larger than
those from the energy group or node face decoupling. Since cross sections are volume
weighted quantities, they are expected to be less sensitive to the boundary condition than
the edge-to-average flux ratio. However, the edge-to-average flux ratio is extremely

sensitive to the boundary condition.

Table 3.10. RMS Errors using Albedo Bounldary Condmons to Reconstruct
the Homogenized Parameters.

BWR

Cross Sections T 0.0320%

Edge-to-Average Flux Ratios 1.5806%
PWR

Cross Sections _ . 0.0031%

Edge-to-Average Flux Ratios ' ' 1.3306%
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Scalar flux profiles near the boundaries of the center nodc for the two energy
- groups are shown in Figures 3.8 and 3.9 for the two geometries. The node boundary and
the 2.5 cm toward the interior of the node are displayed in the figures. The dot&d line
is the reference S|4 scalar flux profile and the solid line is the S, scalar flux profile using
the albedo boundary condition to create the reference currents. In each figure, the albedo
boundary condition accurately predicts the scalar flux profile toward the interior of the
node. However, at the node boundary, the albedo boundary condition has created small
tails. that are clearly visible in the fast energy group. These tails lead to inaccurate
corrclation.s for the edge-to-average flux ratios from the lattice homogenization code and,

it follows, lead to inaccurate flux discontiniity factors.
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Shifted Circle Boundary Condition

In the previous segments, it was shown that the albedo boundary condition does
not sufficiently model the scalar flux profile near nqde boundaries. Examining the values
of the reference odd moments given in Table 3.3 shows that the higher odd moments are
small compared with the current. Also, many of the angular flux profiles in Figures 3.6
and 3.7 imply that the angular flux is contingous near {r(x=0) unlike an albedo
condition. A boundary condition that can create a current and yet cause the higher odd
moments to equal zero may provide a good boundary condition to correlate the
homogenized parameters.

An angular flux profile that can create a current without creating higher odd
moments is a shifted circle shape. In this profile, the angular flux is circular around 2
point to the left or right of the origin. A sample polar plot of this condition is displayed
in Figure 3.10. An equation for the angular flux shape is obtained by writing in x-y

coordinates the equation for a circle with radius 2 and shift &,

(x-b) + y? = a2, G.11)




1 ' 0 1

Figure 3.10. Polar Plot of a Shifted Circle Angular Flux Profile.
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Equation (3.11) is transformed to polar coordinates by using equation (3.7). These

equations result in a form for the angular flux as a function of x,

In examining this equation, the first term is a constant times the first Legendre
polynomial and the second term is an even function. When evaluating equation (3.6) for
the odd moments, the first term only contributes to the current ( ¢, ) because of the
orthogonal relationship of the Legendre poiynomials. Because the second term is an even
function, it never contributes to the odd moments. 'Ihcfcforc. equation (3.12) creates a
current but all other odd moments are exactly equal to zero.

For the two sample geometries, this boundary condition creates the reference
currents on both node surfaces and both energy groups simultaneously in an attempt to
reproduce the reference homogenized parameters. The boundary condition was used on
all surfaces simultaneously to avoid the coupling errors discussed in Section 3.4, The
errors for each homogenized cross section and the edge-to-average flux ratios are listed

in Table C.4 and summarized in Table 3.11.
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Table 3.11. RMS Errors using the Shifted Circle Boundary Conditions to
Reconstruct the Homogenized Parameters.

BWR

Cross Sections  ° A 0.0022%

Edge-to-Average Flux Ratios . : 0.0615%
o PWR o

Cross Sections o o 0.0010%

Edge-to-Average Flux Ratios ' | 0.3351%

Comparing Tables 3.10 and 3.11 show that the shifted circle boundary condition
is far superior to the albedo boundary condition for creating the global flux tilt through
the sample nodes. Howcve;, Table 3.11 does create some concerns. The RMS errors in
the edge-to-average flux ratios for the PWR geometry are much higher than those for the
BWR geometry. Examining Tabl¢ C.4 shows that the larger errors of the PWR geometry
occur on the right surface. This surface is a material boundary as well as a node
boundary. In the reference angular flux profiles for this boundary shown in Figure 3.7,
the angular flux does slightly resemble an albedo shape. Nevertheless, for the geometry
at hand, the shifted circle boundary condition is better than the albedo boundary condition
even on the material boundary. For some interfaces that are vastly different such as the

fuel and baffle/reflector interface, the albedo boundary condition may be necessary.
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However, it is common to analyze the baffle/reflector regions using one-dimensional
extended geometry calculations."

Figures 3.11 and 3.12 are similaf to Figa;es 3.8 and 3.9. In these figures, the
scalar flux profiles near the node boimqari"és‘.-a.rc_ %.how-n for the BWR and PWR
geometries when the reference cﬁrre_nté were cr_t;at;d ﬁsing the shifted circle boundary
condition. The dotted line‘ in both ﬁgures i§ Ithe l;c.-t'eréncg scalar flux shape and the solid
lines are the scalar flux shapes crcatcﬁ.by- using thc. shifted circle boundary condition.
Unlike the albedo boundary condition, cn_lp_!oying‘the shifted circle boundary condition
has not created the tails on the ri_o'de surfac_es.. .Conc!_liding, for .fuelffticl interfaces, the
shifted circle boundary condition more accurately pfcdicts the scalar flux on the edge of

the node than the albedo boundary condition. |

94




980 - .70 -

0.00- . 068 -
.68 - .88 -
. G4 - 054 -
L P--2 0w
i R0 - . § 0.80 -
0N - 058 -
o -f 0.5 -
0H— 0.3 -
L 2 952 -

Postion . Povm

Left Surface, Group 1 - Right-Surface, Group 1

%
&

£6

01z Gz

D.10 010
Pogliicn Pozkinn

Left Surface, Group 2 _ Right Surface, Group 2

Figure 3.11. Scalar Flux Profiles near the Boundaries of the BWR Geometry
created by the Shifted Circle Boundary Condition.




o0-
08 -

0.8 —

éiﬁl\

e -

[}, 2

[ f B

072 -

o

Posiban

Left Surface, Group 1

b6 -
b23-
020 -

B0 -

17 =
=

18-

013,

011 -

b.0Y -

Posifon

Left Surface, Group 2

Figure 3.12. Scalar Flux Profiles near the Boundaries of the PWR Geometry

.76

L] B

br2-

0TG-

8-

nm -

.50

[+,

-
019

07—
- -

045 -

X - TR

0=

008 —

0.07 -

Right Surface, Group 1

Pruilion

Right Suriace, Group 2

created by the Shifted Circle Boundary Condition.




3.6 Polynomial Fitting

In this section, we examine if the correlations for the homogeni.ied CIOss sections
and the edge-to-average flux ratios are linear as shown in equation (1.13). It was shown
in Section 3.4 that terms multiplying the current-to-flux ratio from different energy groups
or from different node surfaces together are small. However, terms that raised the
current-to-flux ratio to a power were not discussed in that section.

For each surface and each en_e_igy group of the two sample geometries, the shified
circle boundary condition is used to create different currents ( and therefore
current-to-flux ratios ) on the surf.acc.of the node. This is necessary to fit the correlation

coefficients to a power series. The currents created on the surface result in current-to-flux

ratios of -0.10, -0.05, 0.0, 0.05, and 0.10. The five different current-to-flux ratios willl

truncate the power series to a fourth order polynomial.

4 .
143 a,,(.% ]” | (3.13)

n=1

The energy group and node face subscripts have been omitted for convenience.
Multiplying the power series and the infinite lattice homogenized parameter together

result in the reconstructed homogenized parameter.
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Typically, the current-to-flux ratios are within a range from -0.10 to 0.10. If the
current-to-flux ratio were as high as +0.10, then the coefficient for the second order
power term would need to be ten times as large as the linear coefficient term to produce

equivalent change in the homogenized parameter. Similarly, to produce the same change,

the third order power coefficient needs to be one hundred times larger than the linear

coefficient, and the fourth order power coefficient needs to be one thousand times larger
than the linear coefficient. For smaller current-to-flux ratios, the higher ordered
polynomial terms become less important. Therefore, a linear correlation should be
sufficient to approximate the correlations provided the second, third, Iand fourth ordered
polynonﬁal coefficients are less than 10, 100, and 1000 times the linear coefficient,
respectively. In Tables C.5 through C.12, the cormrelation coefficients are provided for the
two sample geometries corresponding to currents on both node surfaces and energy
groups. Examining these tables will show that the second, third, and fourth polynomial -
coefficients should not result in significaﬁt changes to the homogenized parameters for
current-to-flux ratios as high as +10%.

Ertors in the reconstructed homogenized parameters .found: i)y using all polynomial
coefficients with the reference 't:in?erit-’t_o‘-ﬂux Tatios a'-re;li'stcd' in Table C.13. Likewise,
errors in the reconstructed homogenized parameters using only the first two polynomial
coefficients with the rcfcrenc;: current-to-flux ratios are listed in Table C.14 and errors
using only the linear coefficient are listed in Table C.15. These errors are summarized in

Tables 3.12 through 3.14.
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Table 3.12. RMS Errors vsing a Fourth Ordered Polynomial to Reconstruct
the Homogenized Parameters.

BWR |
Cross Sections . 0.0041%
Edge-to-Average Flux Ratios 0.1051%
PWR
Cross Sections 0.0036%
Edge-to-Average Flux Ratios 0.3817%

Table 3.13. RMS Errors using a2 Quadratic Polynomial to Reconstruct the
Homogenized Parameters.

BWR _

Cross Sections 0.0037%
Edge-to-Average Flux Ratios 0.0954%
PWR
Cross Sections 0.0033%
Edge-to-Average Flux Ratios 0.3811%
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- Table 3.14. RMS Errors using a Linear Fit- to Reconstruct the
Homogenized Parameters.

BWR
Cross Sections | 0.0085%
Edge-to-Average Flux Ratios 0.3219%
. PWR
Cross Sections - 0.0048%
Edge-to-Average Flux Ratios _ _ 0.3709%

In addition to the polynomial fit, the errors in Tables C.13 through C.15 and
Tables 3.12 through 3.14 include errors caused by energy group decoupling, node face
decoupling, and the shifted circle boundary condition. Many of the RMS emors in
Tables 3.12 through 3.14 are less than the energy group decoupling errors and the node
face decoupling errors. Thus, the combination of these errors can cancel each other out.
In this event, the fourth order polynomial fit cannot claim superior accuracy to the
quadratic polynomial or even the linear ﬁt. Tables 3.12 through 3.14 simply support that
the errors in a linear fit for the homogenized parameters are insignificant compared to the
remaining errors in the energy group coupling and the node face coupling.

The linear correlation coefficient can be approximated by performing only one

additional lattice homogenization for each energy group and each node face. The

additional calculation imposes a current on ong face of the node and in one energy group.

This is repeated for each face and energy group combination.
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3.7 Conclusions for ’Fineling Corrélations to Homogenized Parameters

A method to approximate a concl:étjiop.f(’)r:» improving homogenized parameters
using one-dimensional geometnies is revealed in this chapter. At the beginning of the
chapter, it was assumed that we éan fiﬁd a corrclatibn that couples all energy groups and
node faces together. However, to find this correlation for a polynomial of the second
order would require many lattice homogenization calculations even for a one-dimensional
problem. Performing many lattice homogenization calculations is obviously undesirable.
It was shown in Section 3.4 that we can decouple the energy groups and node faces to
reduce the number of calculations without a great loss of accuracy: A linear correlation
can reduce the number of additional lattice homogenization calculations to one for each
energy group and node face combination. In a common two-dimensional two-group
problem, this would require eight additional calculations assuming no geometric symmetry
of the assembly.

A key to calculating accurate flux discontinuity factors is to correlate the
edge-to-average flux ratio and then use equation (3.4) with the nodal code flux
approximation and diffusion coefficient to figure out the flux discontinuity factors. This -
method greatly improves the accuracy of the flux discontinuity factor over directly
correlating the flux discontinuity factor. This approach has several advantages over a
direct correlation of the flux disconﬁnuity factor. The method corrects for uncertainties

in the diffusion coefficient. For any given diffusion coefficient ( non-zero value ), the
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denominator of equation (3.4) allows us to account for the diffusion coefficient and ﬁnd
a proper flux discontinuity 3fa_:ctorl. Thus, we: do not rieed to correlate the diffusion
coefficient or even calculate the diffusion coefficient. Additionally, the correlated
edge-to-average flux ratios are independent of the nodal code flux approximation unlike
the flux discontinuity factors. This means t_hat’ we ¢an c'hang.c the flux approximation in
the nodal code without requiring additional calculations for the flux discontinuity factor
correlation coefficients.

If the method to hnd correlation coefficients for the homogenized parameters is
a transport theory procedure, then there will exist a boundary condition dilemma. The
" nodal code can produce values for the scalar flux and current at the nddc boundaries, but
it cannot provide values fdr the other higher moments of the angular flux. It was
demonstrated in Section 3.5 that the albedo boundary condition dges not accurately maodel
the remaining higher moments of the angular flux for the two sample geometrics
examined in this chapter. An angular flux shape that resembles a shifted circle does model
the angular flux shape of the two sample geometries rather well. The higher odd moments
of the shifted circle boundary condition are equal to zero. Conversely, the albedo
boundary condition has higher ordered odd moments of the angular flux that are relatively
large. Accuracy of the albedo boundary condition improves if the node boundary is also
a material boundary, However, even for this condition, the shifted circle boundary

condition still outperformed the albedo boundary condition.
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Section 3.6 showed that a linear cpfréliafioxi s{lfﬁcicntly models the homogenized
cross sections and edge-to-average ﬂqx ratib_s” as a function of the current-to-flux ratio.
If the correlation is linear, then wc. need only one additional lattice homogenization
calculation to find the correlation coéfficicn_t associated with a pafticular node face and
energy group. Therefore, equzition (1.'1,3)5'is \-ralid for comrelating the cross sections and
edge-to-average flux ratios provided that the shifted circle boundary'éondition creates the

currents on a node boundary to form the correlations.
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CHAPTER 1V

APPLICATIONS OF CORRELATED HOMOGENIZED PARAMETERS
IN A TWO-DIMENSIONAL GEOMETRY

4.1 Chapter. IV Objectives
It was cbnﬁnned in-Chapter I]I that for saml:;le .one-dirr:nensional BWR and PWR
geometries, & linear. comelation cﬁﬁ accurately mb‘dcl changes in homogenized cross
sections and edge-to-average flux ratios from a lattice homogenization analysis when a
flux tilt is present across a node. However, for a procedure to be applicable, there are
several more issues that ngcd to be addressed that were not discussed Chapter ITII. Among
thésc issues are:

¢ how are the correlations employed in a reactor analysis,

do the adjusted homogenized parameters actually lead to improved global

reactor results and, it so, how fnuch of an improvement is gained,

e do the correlations lead to identical answers using different flux
approximations and diffusion coefficients as suggested by equation (3.4),

¢ how do these correlations interact with changes in the heterogeneous cross
sections, and

» which homogcnized parameters show strong and weak dependencies on the

current-to-flux ratios.
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Responses to these queries will emphasize the necessity of applying global reactor

information to the homogenized parameters.

4.2 Iteration Method for Homogenized Parameters

The method to update homogenized parameters based on current-to-flux ratios is
similar to adjusting homogenized parameters based on thermal feedback effects.
Essentially, the current-to-flux ratios are féeabgck'cffects, only they are not thermal
eﬁécts as are temperatures and densities. Homog'cnized parameters are adjusted when the
global reactor solution obtains gbﬂd, estimétéé for the indepcn&cnt parameters, In this case,
the indgpendent paramebé’ré are the curreh't'—td-ﬂﬁx rﬁtilos. In this chapter, adjustments to
the homogenized parameter'ls m:c& within the nodal code after the flux and eigenvalue
reach their convergence criteria, 1.0e-06. |

The procedure uscd-to solve the giobai reactor mluﬁon- begins by using infinite
lattice homogenized parameters in the global fcﬁctor problem to converge on the fluxes
and eigenvalue. This converged solution should be sufficiently accurate ( relative to a
reference solution ) to provide current-to-flux ratios used to adjust the homogenized
parameters. Then, the flux and eigenvalue iterations resume using the adjusted
homogenized parameters to arrive at yet another global reactor solution. The second
solution should be more accurate than its predecessor because the homogenized
parameters now consider the global reactor effects. Since the current-to-flux ratios of the

second solution will be different from the first, the comelations are used to adjust the

105




homogenized parameters again and a third global reactor solution is found. Each
improvement in the homogenized parameters should result in a more accurate global
reactor solution. Thus, adjusting the homogenized parameters is an iterative technique that
is contained within the nodal codc; When the homogenized parameters between two
successive iterations are equal to within a convergence criteria, then the global reactor
solution has completely converged on the eigenvalue, fluxes, and homogenized parameters

used to find the eigenvalue and fluxes. The iterative method is shown in Figure 4.1.
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Figure 4.1. Iteration Procedure to Adjust Homogenized Parameters.
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4.3 Global Reactor Descriptions

In this section, the two-dimensional sample geometries that resemble BWR and

PWR fuel patterns are described. Each global reactor problem is composed of nine fuel

assemblies arranged in a 3x3 pattern. Problems larger than this would create difficulties -

in finding a reference solution using JTC. The geometries in this chapter model many
heterogeneities iﬁ the BWR and PWR fuel assemblies.
Geometry Dcs-cript'ions |

The geometry dimensions and location of materials for all fuel assemblies in the
BWR problem are icicntical, only the cross sections of the fuel materials are different.
Each BWR assembly is analyzed with and without a cruciform control blade inserted. All
~ BWR fuel assemblies are one-half symmetric. For the PWR fuel assemblies, again the
geometry dimensions and location of materials are identical for each fuel assembly. The
difference between the assemblies is the fuel reactivity. The PWR fuel assemblies are
onc-eiéhth symmetric. The most reactive PWR fuel Iassembly is also analyzed with a

control rod cluster inserted. Dimensions for the two geometries are provided in Table 4.1.
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Table 4.1. Fuel Assembly Dimensions for the Two-Dimensional Problems.

BWR
Pitch 1.63 cm
Can Thickness -0.4 cm
Wide Water Gap ' 1.0 cm
Narrow Water Gap 0.5 cm
Control Blade Thickness* | 0.8 cm
PWR**
Pitch 143 cm

*

The control blade thickness is the full width of the control blade, only half of
which is in a fuel assembly.

** The thin water gap between PWR assemblies is neglected.
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BWR Fuel Assemblics. The gcc';mctriés' of tlic BWR fuel assemblies are shown
in Figures 4.2 through 4.4. The BWR fuel can and the control blade are shown in thésc
figures. Each assembly is analyzed with aﬁd wit-.hbtit the control blade inserted. The fuel
pin loading is homogeneous with the exception of the fuel in the most reactive assembly
shown by Figure 4.2, This assembly contains three fuel pins in the upper right comer that
have a lower reactivity than the remaining fuel.

The global reactor problem is displayed in Figure 4.5 along with the location of
the control blade. The outer boundaries of the global reactor problem are reflective. Also
shown in Figure 4.5 is the rotation of each fuel assernbly. The rotation places the wide
water gap and the control blade pos.itinn in the proper location. Fuel assemblies with an
asterisk have the control blade inserted. As seen in Figure 4.5, the global reactor problem
is composed of six distinct fuel assemblies. These six assemblies are the three different
fuel reactivities with and without the inserted cruciform control blade. Assembly A is

more reactive than assembly B and assembly B is more reactive than assemble C.
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Figure 4.2. Geometry of BWR Fuel Assembly A.

{ Most reactive BWR assembly. }
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Figure 4.3. Geometry of BWR Fuel Assembly B.
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Figure 4.4. Geometry of BWR Fuel Assembly C.

( Least reactive BWR assembly. )

113




B

C A
(0) 270 (0)
A* >t C
(90) (180) (90)
B* AT B
(0) (270) 0)

114

Figure 4.5. Global Reactor Geometry for the BWR Problem.




PWR Fuel Assemblies. The PWR fuel assemblies have a 15x15 pin design with

21 water holes. The water holes represent the only hcterogcnéity in the aslscmblies except
for a control 1od cluster inserted in the most reactive assembly. The control rod cluster
contains eight control pins. Asterisks in Figure 4.6 show the location of the eight pins.
The PWR fuel assembly geometries are displayed in Figures 4.6 through 4.8.

The global reactor problem for the PWR geometry, seen in Figure 4.9, shows that
two of the most reactive fuel assemblies have a control rod cluster inserted. Since the
PWR fuel assemblies are one-eighth symmetric, no rotation of the fuel assemblies is
necessary. The outer boundaries of the global: ré;;:ulr problem are reflective. As seen in
Figure 4.9, the global reactor ge(')metry_' is composeci of four distinct fuel assemblies.
Assembly D is more reactive than assembly E and assembly E is more reactive than

assembly F.
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Figure 4.6. Geometry of PWR Fuel Assembly D.

( Most reactive PWR assembly. )
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Figure 4.7. Geometry of PWR Fuel Assembly E.
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Figure 4.8. Geomeiry of FWR Fuel Assembly F.

( Least reactive PWR assembly. )
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Figure 4.9. Global Reactor Geometry of the PWR Problem.
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Heterogeneous Cross Sections

The hetérogeneous cross sections for the BWR and Pwil assemblies are hsted in
Table 4.2. The BWR assemblies use thc water gap material ( matcfial 4 } and the PWR
assemblies use the water hole mz-aterial ( material 5 ). The absolrbcr material is used for
the cruciform control blade in the BWR assemblies and the; control rod cluster of the
PWR assemblies.

Heterogeneous diffusion coefficients are not listed in .Tablc 4.2. The COMBINE

cross section generation code has as output P, or P; scattering cross sections and diffusion
coefficients. Scattering cross sections are g?ven in Table 4.2 because they are essential for
the transport calculations but the diffusion coefficients are not. From 2 transport
calculation, there are several methods to compute a homogenized diffusion coefficient.
Therefore, because of the arbitrary nature of the homogeneous diffusion coefficient,
Table 4.2 excludes the heterogeneous diffﬁsicm coefficients.

In the heterogeneous cross section set, Fuel 1 is UQO, with an enrichment of 3.1%,
Fuel 2 is UQ, with an enrichment of 2.6%, and Fuel 3 is UQ, with an enrichment of
2.1%. These different enrichments provide the different reactivities for the fuel

assemblies.
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Table 4.2. Reference Transport Theory, Cross Sections for the

Two-Dimensional Studiés. cm’ ( No upscattenng )

Z

Material Group Z, . v,
1 1 1.016e-02 2876603 7.346¢-03
(Fue) 2 1003601 617102 1504601
2 1 9.789¢-03 2.580e-03 6.622¢-03
(Fuel) 2 90702 52M4e02 128501
3 1 9.399¢-03 2.274¢-03 5.872¢-03
Fuel) 2 798002 | 4346e02 105901
e 946104 . 0 ' 0
L W.Gapy 2 363902 0 0
5 1 1.025e-03 0 0
(W. Hole) 2 3.3009e-02 0 1)
e T T 069903 0 'y
(Absorber) 2 339801 0 0
R 104303 0 0
(Can) 2 4.394¢-03 0 0
Scattering Energy Group
Material Order 1tol 1to2 2t02
1 P, 5.087e-01 1.557¢-02 1.150e+00
Fuel) P _ L706e-01 ~  3981e-03 3.089e-01
2 P, 5.093¢-01 1585¢-02  L161e+00
(Fueh) P _1709%-01 - 4073e03 308801
3 P, 5,099e-01 1.614e-02 1.173e+00
C(Fue) P 171201 4170e-03 308701
4 P, 6.018¢-01 3570002 2.005e+00
W.Gapy A (243901 0 707403 5.550e-01
5 P 5.767¢-01 3.240e-02 1.813e+00
(W. Hole) P 2300001 695903 4.965¢-01
s R, 4325001 1080002 B.745e-01
_(Absorber) P 139901 210303 266201
7 P, 2.071e-01 9.095¢-03 4.704¢-01
(Can) P, 0.000e+00 0.000e+00 0.000e+00
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4.4 Reference Solutions and Soiuﬁons using Infinite Lattice
Homogenized Parameters
In this section, reference solutic;nslhafe estﬁbli_sh'cd for the two global reactor
problems. An §; angular quadrature set is uscd to analyze the global reactor geometries
to obtain the reference solutions. In thé BWR ‘gécjm'c.try, the mesh spacing for the fuel

pins is 3 meshes per pin. The BWR can, narrow water gap, and control blade are divided

‘into 2 meshes and the wide water gap is divided into 4 'meshcs.. Thus, the global BWR

problerﬁ size is 102x102 meshes. For the PWR. geometry, each fuel pin is divided into
3 meshes and so the global problem size ‘is 135 x135 __ineé.hes. The convergence criterion
for the mult.iplic.ation factor is 1.0e-06 and the convergence criterion for the scalar flux
is 5.0e-06. All single assembly calculations use the same quadrature set, mesh spacing and
convergence criteria as the reference global solution. |

Infinite lattice homogenized parameters are found for each distinct fuel assembly
using reflective boundary conditions. The homogenized parameters are listed in
Tables D.1 through D.3 for the BWR fuel assemblies and Tables D.4 through D.6 for the
PWR fuel assemblies. For infinite lattice homogenized parameters, the flux discontinuity
factor is equal to the edge-to-average flux ratio. |

Using NDT, global reactor solutions are found using the infinite lattice
homogenized parameters along with different flux approximations. Normalized powers
from the reference solutions are provided in Tables 4.3 and 4.4 for the BWR and PWR

geometries, respectively, and emors in the nommalized powers from the various nodal
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solutions are also given inthese tables. The -mu-lt.'ipl"ication factor found by each solution
is also listed in Tables 4.3 and 4.4.

The nodal solutions used in Tables 4.3 and 4.4 are the mesh centered finite
difference ( F.D. ), quadratic polynomial, and quartic polynomial flux approximations.
Examining these two tables does not clearly show that one flux approximation is any
better than the next, but rather that different flux approximations simply produce different
results as expected. Nevertheless, in the BWR geometry, the quartic polynomial flux
approximation produces the most favorable results for the power profiles. With this
solution, the maximum error and RMS error of the assembly powers are 2.30% and
1.21%, respectively. The mesh centered finite difference flux approximation provides the
most favorable results for the PWR geometry. This solution results in_ a maximum
assembly power error of 3.83% and a RMS assembly power error of 2.11%. These tables

provide comparison results for any method to improve homogenized parameters.
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Table 4.3. Reference Normalized Powers and Errors using Different Flux Approximations
with the Infinite Lattice Homogenized Parameters for the BWR Geometry.

0.8608 1.1375 14317

-3.94% 0.33% 2.35%

-539% 1.92% 7.36%

Eigenvalue -1.68% 0.10% 2.30%

Reference - 1.02600 0.8977 0.7940 1.0066
F.D. 1.02544 -1.81% 283% | 1829
Quadratic 1.02385 -3.69% -2.44% -0.06%
Quartic 1.02402 -1.65% 0.40% 0.22%
0.7856 0.9691 1.1169

-3.93% 0.82% 0.45%

6.50% 0.38% 1.76%

1.22% 0.66% 0.35%
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Table 4.4. Reference Normalized Powers and Errors using Different Flux Approximations
with the Infinite Lattice Homogenized Parameters for the PWR Geometry.

1.0070 0.9128 1.1448

-1.57% 1.89% 1.16%

-1.23% -1.33% 2.80%

Eigenvalue -1.26% -0.66% 2.97%

Reference 1.10516 0.8119 1.1887 1.1179
F.D. 1.10531 -1.99% -3.34% 3.83%
Quadratic 1.10416 -4.91% - 2.25% 4.27%
Quartic 1.10437 -3.99% 1.72% 3.25%
0.8494 0.8520 1.1155

-1.47% 0.11% 0.88%

-3.98% -3.40% 1.84%

-5.48% -2.31% 2.39%
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4.5 Global Reactor Solutions u'sirig Homog: enized Parameter

Correlations

In this section, the two global reactor problems are :analyzcd using correlations to
adjust homogenized parameters based on information from the global reactor solutions.
First, correlations fbr the BWR and PWR fuel assemblies are found. Then, the number
of times to adjust the homogenized parameters to arrive at a final solution is discussed.
In Chapter III, it was stated that correlations can account for differences in flux
approximations and diffusion coefficients. Thus, a portion of this section is devoted to
analyzing the global solutions with different flux approﬂmﬁtions and diffusion
cocefficients.
Finding Correlation Coefficients

A procedure to find correlation coefficients for the homogenized parameters is
described in this segment. Since equation (1.13) shows how to use the correlation

coefficients after they are found, it should also show how to find the correlation

coefficients. Comparing different sets of homogenized parameters, each with different

current-to-flux ratios on the boundary, leads to values for the correlation coefficients by
employing equation (1.13). Rearranging equation (1.13) defines the correlation coefficient
associated with a node face and energy group for each homogenized parameter., One
calculation needed to find the correlation coefficient is the infinite lattice calculation that

is readily available for nodal analyses. The other has a current imposed on one boundary

of the node to simulate a global flux tilt through the node volume. As discussed in
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Chapter III, the shifted circle 'bound.ary condition accurately models the global flux tilt
and so it is implemented throughout this chapter. Once the current created by the
boundary condition and the average ﬂw; in the node are- known, then it is a simple
procedure to use equation (1.13) to compute the correlation coefficients associated with
the current.

The value of the current used to brca"té a global tlux tilt through the node should
be large enough to reveal changes in the node conditions ( i.e., much larger than
truncation and round-off errors ) and yet within a practical current-to-flux ratio range.
Therefore, a. current-to-flux ratio of approximately +5% should be sufficient for BWR and
PWR analyses. Each of the ten distinct fuel assemblies ( six BWR assemblies and four
PWR assemblies ) of Section 4.3 are analyzed using this current-to-flux ratio.

Using symmetry conditions reduces fhe number of single assembly calculations
needed to find a complete set of correlation coefficients. The complete set of correlation
coefficients describes changes due to current-to-flux ratios from all node surfaces and
energy groups. With symmetry conditions, the BWR assembly requires four single
assembly calculations in addition to the infinite lattice calculation to form a complete set
of correlation coefficients and the PWR assembly requires two additional single assembly
calculations. The symmetry conditions do not describe the model for the fuel assembly,
as is usually the case, but the manner that a current-to-flux ratio affects the homogenized
parameters. For instance, symmetry for the BWR assembly in Figure 4.2 does not refer

that only half the assembly is modelled but that a current-to-flux ratio on the left
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boundary affects the homogcﬁizcd parameters. idcn.tically toa cu&cnt-to—ﬂux ratio on the
bottom boundary. If we used symmetry to model only half of the BWR assembly in
Figure 4.2 with a current on the left boundary, then this is identical to modelling the full
assembly with a current on the left and bottom boundaries. In this caslc, the effect that
each current places on the cross sections can be decoupled because each current affects
the cross sections equally ( cross sections are volume integrated ). However, it is
impossible to separate the effect that cach'.currcnt has on an edge-to-average flux ratio
without additional calculations ( edge fluxes are surface integrated ). Obviously, the
current on the left boundary affects the left edge-to-average flux ratio differently than the
current on the bottom boundary. Assuming that both currents affect the edge-to-average
.flux ratios equally will create extremely large errors in the comelation coefficients.

The correlation coefficients for thé six BWR fuel assemblies are provided in
Tables D.7 through D.12 and the coefficients for the four PWR fuel assemblies are
provided in Tables D.13 through D.16. The correlation coefficients are based on a current
entering the node having a positive value as opposed to currents moving the right or

upward being positive.
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Convergence Characteristics using: Different Flux Approximations

It is demonstrated in this segment that compuiting the flux discontinuity factors by
equation (3.4) results in identical solutions whe’p the nodal code uses different flux
approximations. The homogenized parameters are adjusted twenty times for each analysis
to arrive at a solution that is well within practical convergence limits. The flux
approximations used in the nodal code are-thc mesh centered finite difference, quadratic
polynomial, and quartic polynomial apprqximations. The eigenvalue and errors in the
assembly powers for the two sample geometries are presented in Tables 4.5 an 4.6. Also

examined in this segment are the convergence rates of the three flux approximations.
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Table 4.5. Eigenvalues and Emors. in the: Power Profiles using Different Flux
Approximations found after updating the Homogenized Parameters Twenty Times for the
BWR Geometry.

0.11% 0.30% 0.77%

0.11% -0.29% 0.77%
Flux E 0.11% -0.30% 0.77%
Approx. Eigenvalue

F.D. 1.02608 -1.20% 0.34% 0.10%

Quadratic 1.02608 -1.20% 0.34% 0.10%

Quartic 1.02608 -1.21% 0.34% 0.11%

0.31% -0.51% 0.09%

0.31% -0.51% 0.09%

0.30% -0.51% 0.10%
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Table 4.6. Eigenvalues and Errors in the Power Profiles using Different Flux
Approximations found after updating the Homogenized Parameters Twenty Times for the
PWR Geometry.

-1.06% 0.37% 0.61%

_ -1.06% 0.39% 0.62%

Flux -1.08% 0.38% 0.64%
Approx. Eigenvalue .

F.D. 1.10531 -0.35% -0.91% 1.64%

Quadratic 1.10532 -0.34% -0.92% 1.63%

Quartic 1.10532 -0.35% -0.92% 1.64%

-041% -0.09% 0.01%

-0.44% -0.07% 0.01%

-0.46% -0.07% -0.01%
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As seen in Tables 4.5 and 4.6, all three flux approximations result in identical
solutions ( neglecting round-off and wruncation errors ). For the BWR problem, the
maximum assembly power error reduced froi:n 2.30% to 1.21% and the RMS error of the
assembly powers reduced from 1.21% to 0.54%. The difference in the gigenvalue from
reference reduced from 0.00198 to -0.06008. Similarly for the PWR problem, the
maximum assembly power error lnaduccd from 3.:83% to 1:64% and the RMS assembly
power emor reduced from 2.11% to 0.78%; The differeﬁce in the eigenvalue from

reference reduced from 0.00079 to -0.00016. These results show that the employing the
correlations in the nodal analyses causes. errors in the assembly powers to reduce by
approximately a factor of two. As a conservative measure, the results in Tables 4.5 and
4.6 were compared to the best infinite lattice solution from Tables 4.3 and 4.4. These
results demonstrate that the final solution is independent of the flux approximation used
in the nodal code.

The final solution being independent of the flux approximation is an extremely
important result because it proves that the correlations allow a simple flux approximation
such as the finite difference model to produce solutions identical to complex flux
approximations such as the quartic polynomial that uses a moments weighing technique
and a quadratic transverse leakage shape. Because of the moments weighing technique
and quadratic transverse leakage shape, the complex flux approximation is more expensive
to code and more expensive to solve a problem than the simpler finite difference

approximation. This obviously benefits using simpler flux approximations.
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However, further examination of the number of times to adjust the homogenized
parameters to reach practical convergence clearly favors the more complex flux
approximation. The ecigenvalue reached -at the end of each flux and eigenvalue
convergence loop associated with each adjugtmgnt in the homogenized parameters is listed
in Tables 4.7 and 4.8 for the BWR and PWR geometries, respectively. It is seen in both
tables that the quarﬁc polynomial flux approximation requires fewer adjustments to reach
practical convergence on the problem than the mesh centered finite difference
approximation. This consequence is directly associated to the accuracy of the flux
approximation. Because the quartic pol_yno‘mial is generally a more accurate
approximation than the quadratic and ﬁnite zliffcrcncc approximations, it produces better
global reactor results ( i.e., better chrfent-to—flux .r'atioé ) than the other approximations
and, in tum, these improved results lead to faster convergence with the correlations.

A good measure of the convergence rate is to compare the eigenvalue after the
first homogenized parameter adjustment to the eigenvalue found after twenty adjustments.
The eigenvalue after the twentieth adjustment is used because this is the solution that the
nodal code ultimately reaches rather than the reference solution. For the BWR problem
using the finite difference approximation, the difference in the eigenvalues is 0.00023.
This shows good improvement compared to the 0.00064 difference found
without adjusting the homogenized parameters. The quadra;ic polynomial also shows good

improvement for the BWR geometry by having a difference in eigenvalues of 0.00016.

However, after only one adjustment, the quartic polynomial approximation shows
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excellent agreement with the eigenvalue for the BWR geometry. Similar results are seen
in the PWR geometry. In these cases, the quartic polynomial needs only one adjustment
on the homogenized parameters to result in excellent agreement with the converged

gigenvalue,
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Table 4.7. Eigenvalue at the End of Each Flux and Eigenvalue Convergence Loop for the

BWR Geometry using Different Flux Approximations.

Adjustment # | ED. Quadratic Quartic
Initial 1.02544 1.02385 1.02402
1 1.02585 1.02592 1.02608
2 ©1.02585 1.02599 1.02606
3 1.02592 1.02603 1.02607
4 1.02597 1.02605 1.02607
5 102600 1.02606 1.02607
6 1.02602 1.02607 1.02607
7 1.02604 1.02607 1.02607
8 102605 102607 1.02607
9 102606 102607 102607
10 1.02606 1.02608 1.02607
11 1.02607 1.02608 1.02608
12 1.02607 1.02608 1.02608
13 102607 1.02608 1.02608
14 1.02607 1.02608 1.02608
15 1.02607 1.02608 1.02608
16 1:02607 1.02608 1.02608
17 1.02608 102608 1.02608
18 1.02608 1.02608 1.02608
19 1.02608 1.02608 1.02608
20 1.02608 1.02608 1.02608
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Table 4.8. Eigenvalue at the End of Each Flux and Eigenvalue Convergence Loop for the

PWR Geometry uwsing Different Flux Approximations.

Adjustment # F.D.

Quadratic Quartic

Initial f 1.10531 1.10416 1.10437
1 1.10490 1.10507 1.10531
2 = 1.10499 1.10517 1.10532
3 1.10507 1.10523 1.10532
4 11.10512 1.10526 110532
5 1.10516 1.10528 1,10532
6 1.10520 1.10530 1.10532
7 1.10522 1.10530 1.10532
8 1.10524 1.10531 1.10532
9 1.10526 1.10531 1.10532
10 1.10527 1.10531 1.10532
11 1.10528 1.10531 1,10532
12 1.10529 1.10531 1.10532
13 1.10529 1.10532 1.10532
14 1.10530 1.10532 1.10532
15 1.10530 1.10532 1.10532
16 1.10530 1.10532 1.10532
17 1.10531 1.10532 1.10532
18 1.10531 1.10532 1.10532
19 1.10531 1.10532 1.10532
20 1.10531 1.10532 1.10532
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Convergence Characteristics using Different Diffusion Coefficients

The two global reactor geometries are analyzed in this segment using abnormal
diffusion coefficients. The goal of performing these analyses is to determine if the
diffusion coefficient is an arbitrary parameter as discussed in Section 3.4. Since it was
found that the quartic polynomial flux approximation provides superior convergence
results than the finite difference or (']uad_ratic' polynomial flux approximations, analyses
in this segment use the quartic flux approximation. For all assemblies in both geometries,
typical values for the diffusion coefficients are approximately 1.4 cm and 0.7 cm for the
fast and thermal energy groups, réspe,c-'t_i__vely. This segment replaces the diffusion
coefficients given in Tables D.1 ,mlrough D.6 with the folowing combinations; (i} 1.0 cm
and 0.5 cm, (ii) 0.7 cm and 0.2 cm, and (iii)} 2.8 cm and 0.8 cm for the fast and thermal
energy groups, respectively. These values will not affect the continuity of current
equations ( equations (2.28) ) because the diffusion coefficients in adjacent nodes are
equal and will cancel out. However, they will alter the leakage in the neutron balance

equation and, thus, alter the currents and the average fluxes in each node.
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Table 4.9. Eigenvalues and Emors in the Power Profiles using Various Diffusion
Coefficients with the Quartic Flux Approximation after updating the Homogenized
Parameters Twenty Times for the BWR Geometry.

0.10% -0.30% 0.77%
0.11% 0.29% 0.77%
Diffusion | . - ;
Coefficients Eigenvalue | 3
10705 1.02607 122% - 034% 0.12%
07/02 102608 121% 0.34% 0.11%
28/08 diverged - - -
0.28% 0.51% 0.11%
0.30% -0.52%  0.09%
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Table 4.10. Eigenvalues and Errors in the Power Profiles using Various Diffusion
Coefficients using the Quartic Flux Approximation after updating the Homogenized
Parameters Twenty Times for the PWR Geometry.

-1.08% 0.39% 0.64%

-1.06% 0.39% 0.62%
Diffusion ' - - -
Coetficients Eigenvalue ,
10/05 1.10532 -0.35% -0.92% 1.64%
07702 1.10532 -0.34% -0.92% 1.63%
28/038 diverged _ - - -
-0.46% -0.07% -0.01%
-0.45% 0.07% 0.00%
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As seen in Tables 4.9 and 4.10, two of the three diffusion coefficient sets
converged to identical solutions as presented in Tables 4.5 and 4.6. Therefore, using
diffusion coefficient sets of 1.0/0.5 and 0.7/0.2 also reduced assembly power errors by a
factor of two compared to the best solution using infinite lattice homogenized parameters
without correlations. Also, these two sets of diffusion coefficients reduced the error in the
cigenvalue compared to the best nodal solution using infinite lattice homogenized
parameters. Results from these tables prove that evaluating the flux discontinuity factor
by cormrelating the transport theory edge-to-average flux ratio does account for
uncertainties in the diffusion coefficient proi;ided that values of the diffusion coefficients
are within reason, A reasonable diffusion coefficient can be found by any of the common
techniques presently used to find diffusion coefficients. This can include flux and volume
weighing the heterogeneous diffusion coefficients, flux and volume weighing the
heterogeneous transport cross sections then rnuitip]ying by three and inverting, or any
other well-known method. These methods should all result in diffusion coefficients that
are within a general cxpcctéd range. For example, a range of 1.0 to 1.8 for the fast energy
group of a light water reactor.

In the analyses where the solution diverged, the large diffusion coefficients
overpredicted the currents on the node boundaries. This, in turn, cavsed the current-to-flux
ratios of the nodal solution to be larger than the reference current-to-flux ratios and,
therefore, the adjusted homogenized cross sections were overpredicted. More importantly,

the correlated values of the edge-to-average flux ratios were also overpredicted. These
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adjustments lead to an oscillating effect of overpredicting and underpredicting the
homogenized parameters and, thus, the iterative procedure diverged. Négativc values of
the diffusion coefficient were not examined because of convergence characteristics of the
neutron balance equation associated with the negative diffusion coefficients.

As in the previous segment, an important feature to examine is how often the
homogenized parameters are adjusted to reach practical convergence for the various sets
of diffusion coefficients. As before, examining the eigenvalue at the end of a series of
outer iterations ( when the flux and eigenvalue have converged for the given set of
homogenized parameters ) provides some insight to the dilemma. The eigenvalue found
after each adjustment to the homogenized parameters is listed in Tables 4.11 and 4.12 for
the BWR and PWR geometries, respectively. Comparing the third column of Table 4.7
to Table 4.11 shows that the reasonable values for the diffusion coefficients ( ~1.4/0.4
from Table 4.7 ) require fewer adjué.tmcnts to the homogenized parameters to reach
practical convergence than the arbitrary diffusion coefficients used to generate Table 4.11.
However, results in the first column of Table 4.11 suggests that great accuracy ( accuracy
greater than one-tenth ) for the diffusion coefficient may be unnecessary. Comparing
Tables 4.8 and 4.12 show the same conclusions for the PWR geometry.

These results can aid in simplifying the diffusion equations. For example, if the
diffusion coefficients for an energy group are equal for all assemblies, then the diffusion
coefficient will cancel out in the continuity of current equation ( equation (2.28) ). This

leads to a simpler equation to program in a nodal code.
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Table 4.11. Eigenvalue at the End of Each Flux and Eigenvalue Convergence Loop for

the BWR Geometry using Various Diffusion Coefficients.

10/05

Adjustment # 0.7 /02 28/0.8
Initial 102527 1.02773 1.02259
1 1.02611 1.02599 1.02596
2 1.02607 1.02605 1.02607
3 1.02607 1.02607 1.02609
4 1.02607 1.02607 1.02605
5 1.02607 1.02608 1.02612
6 1.02607 1.02608 1.02599
7 1.02607 1.02608 1.02616
8 1.02607 1.02608 1.02587
9 - 1.02607 1.02608 1.02638
10 1.02607 1.02608 diverged
11 1.02607 - 102608
12 1.02607 102608
13 1.02607 1.02608
14 1.02607 1.02608
15 1.02607 1.02608
16 1.02607 1.02608
17 1.02607 1.02608
18 1.02607 102608
19 ©1.02607 1:02608
20 1.02607 1.02608
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Table 4.12. Eigenvalue at the End of Each Flux and Eigenvalue Convergence Loop for
the PWR Geometry using Various Diffusion Coefficients.

Adjustment # 1.0/0.5 07702 28/08

Initial i 1.10497 f 1.10570 f 1.10376
1 1.10531 1.10523 1.10521
2 : 1.10532 110528 1.10537
3 1.10532 1.10530 1.10529
4 1.10532 1.10531 1.10533
5 1.10532 1.10531 1.10531
6 110532 1.10532 f 1.10532
7 1.10532 1.10532 1.10532
8 1.10532 1.10532 1.10532
9 110532 - 1.10532 1.10532
10 1.10532 f 1.10532 f 1.10533
11 1.10532 1.10532 1.10536
12 1.10532 1.10532 1.10543
13 1.10532 1.10532 f 1.10556
14 110532 1.10532 1.10615
15 110532 110532 | 110649
16 1.10532 1.10532 diverged
17 1.10532 f 1.10532 '

18 1.10532 1.10532

19 1.10532 1.10532

20 1.10532 f 1.10532
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Conclusions for Applying Correlations to Homogenized Parameters

It was numcrjca.lly proven in this section that applying global reactor information
{ current-to-flux ratios ) to the homogenized parameters increases the accuracy of the
global reactor solution by approximately a factor of two compared to solutions that do not
use global reactor information to adjust the homogenized parameters. Additionally, it was
shown that concerns for the accuracy of the nodal code flux approximation and diffusion
coefficients are eased by applying correlations to the homogenized parameters. Except for
large values for the diffusion coefficients, it was demonstrated that different flux
approximations and diffusion coefficients all result in identical solutions for the two
sample geometries. This is because the infinite lgtticc homogenized parameters and
correlations to adjust them are independent of the flux approximation in .t.he nodal code
and the homogenized diffusion coefficient.

However, it was also pointed out that better flux approximations and diffusion
coefficients require fewer adjustments to the homogenized parameters to reach a
practically converged solution. A fully converged solution results in identical flux prqﬁles
before and after making adjustments to the homogenized parameters. It was shown that,
with a superior flux approximation and reasonable valu;*:s for diffusion coefficients, only
a couple of adjustments to the homogenized parameters are necessary to reduce the
assembly power errors by a factor of two.

For the diffusion coefficients, only reasonable values are necessary for the flux and

eigenvalue iterations. This means that computer codes can eliminate storage requirements
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for the diffusion coefficient in favor of one approximate diffusion coefficient for each
energy group for all fuel assemblies. For example, in common BWR or PWR fuel
assemblies, the diffusion coefficient can simply be set at 1.4 cm and 0.4 cm for two group

problems. The reflector may need a separate diffusion coefficient for each energy group.

4.6 Approximations to Correlation Coefficients

In this section, the correlation coefficients for the different fuel assemblies are
compared to each other. As seen in Appendix D for the BWR assemblies, each set of
homogenized parameters requires storage of 52 correlation coefficients assuming one-half
symmetry and two energy groups ( 5 cross sections plus 8 edge-to-average flux ratios
times 4 current-to-flux ratios ). This increase in the storage requirements is a
disadvantage to applying global reactor information to the homogenized parameters. The
purpose of this section is to examine methods to reduce the storage requirements for the
correlation coefficients by finding and eliminating the weak dependencies.

In a quick comparison of values for the correlation coefficients in Appendix D,
the magnitudes of the cross section coefficients are different from the magnitudes of the
edge-to-average flux ratio coefficients. The edge-to-average flux ratio coefficients are
much larger than the coefficients for the cross sections. Therefore, no comparison is made

between these two categories of homogenized parameters.
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Effect of Thermal Gronp Currents on Fast Group Homogenized Parameters

For the two group problems in this thesis, examining the correlation coefficients
shows that thermal energy group current-to-flux ratios do not show strong effects on the
fast energy group homogenized parameters. These coefficients are approximately a factor
of ten smaller than the other coefficients. This suggests that these effects are weak and
opens the possibility of neglecting the them. However, for the BWR geometry, neglecting

these effects results in a maximum assembly power error of 1.97% and the RMS

assembly power error is 0.90%. Similarly for the PWR geometry, the maximum error is

3.70% and the RMS error is 1.69%. These errors do not show much improvement over
the best solution using infinite lattice homogenized parameters without correlations. Thus,
the thermal group current-to-flux ratio correlation coefficients affecting the fast group
homogenized parameters are sxﬁa’ller than other coefficients, but they are necessary to
obtain accurate global reactor solutions. |

Effect of a Current on the Edge-to-Average Flux Ratios of Orthogonal Surfaces -

Another observance in most sets of correlation coefficients is that a current

crossing one surface ( the left surface for instance ) rhinutcly affects the edge-to-average
flux ratio correlation coefficients on an orthogonal surface ( the top or bottom
edge-to-average flux ratios ). In the PWR fuel assemblies, this consequence is not
surprising because of the symmetry of the fuel assemblies. Looking along the face of any
~of the PWR assemblies, the top face of Figure 4.6 for example, the materials are all fuel

pins with identical cross sections. Thus, the flux shape across the top boundary will not
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have a local maxima or minima. In this figure, if a current is present on the left surface
coming into the assembly, then we -cx-pcct the edge-to-average flux ratio on the top
boundary near the left side to be high '_an’d'thc edge-to-average flux ratio near the right
boundary to be low. Since equivalence theory is concermed with integral results,
integrating the edge flux shape across the top boundalj when a current is present on the
left surface has little effect on the top edge flux value. For the PWR global reactor
problem, neglecting theéc effects results in 2 maximum assembly power error of 1.65%
and a RMS error of 0.80%. These errors are minutely increased from errors that include
the orthogonal effects.

However, in the BWR fuel assemblies, the effect that a current has on an
edge-to-average flux ratio on a surface with a control blade inserted is large. In Figure 4.2
for example, a current on the left boundary has a significant effect on the edge-to-average
flux ratio on the top surface but not the bottom surface. This is because the material along
the bottom surface is uniform ( water ) and the materials along the top surface are part
water and part ﬁbsorbcr. When the edge flux is integrated along the top surface, a current
on the left boundary causes a large change in the top edge flux value.

Surprisingly, neglccting'thc effect that currents have on the edge-to-average flux
ratio on orthogonal surfaces actually leads to improved results for the BWR geometry.
The maximum assémbly power emor is (.66%, almost half that of the maximum error
when accounting for these effects. Leaving out these orthogonal effects also reduces the

RMS assembly power error from 0.54% to 0.36%. However, these results for the BWR
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geometry should not imply that ignoring the effects that a current has on an
edge-to-average flux ratio on an orthogonal surface always improves the global reactor
solution. In the geometry at hand, the outer boundaries are reflective ( i.e., no current )
and they do not contain the control blade. As such, there are few surfaces that actually
contribute to these éffccts. In a full model of a BWR reactor, the global solution will
contain many currents that affect the edge-to-average flux ratio on the orthogonal
surfaces. Thus, it may be acceptable to overlook the effect that a current has on the
edge-to-average flux ratio on an orthogonal surface provided that the material near the
orthogonal surface is wniform.
Effects of nts in Assemblies with Similar Material Arrangements

It can be seen in the tables in Appendix D that the correlation coefficients are
largely dcpendeﬁt on the material arrangement in the assembly. In the BWR fuel
assemblies analyzed, the geometries ( dimensions ) are identical. However, the correlation
coefficients for an assembly with the control blade inserted are vastly different from an
assembly without the control blade. This difference represents a different material
arrangement. Each assembly is also analyzed with different fuel cross sections. This is not
a different material arrangement because fuel is not replaced by a different material type
such as water or absorber. Examining the three BWR fuel assemblies without the control
blade shows that the correlation coefficients are nearly identical. The same holds true for
the BWR fuel assemblies with the control blade and the PWR fuel assembiics without the

control rod cluster inserted. This implies that the coefficients show little dependence on
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details. of the fuel cross sections provided that the fuel cross sections are equal in all fuel
pins.

Analyzing the global reactor problems with identical correlation coefficients for
similar assemblies does not create significant errors in the global reactor solutions. The
BWR geometry using the correlation coefficients of Table D.7 for the five assemblies
without control and the correlation coefficients of Table D.§ for the four assemblies with
the control blade results in a maximum assembly power error of 1.22% and a RMS error
of 0.66%. Similarly for the PWR geometry, using the coefficients of Table D.13 for all
fuel assemblies without a control rod cluster inserted results in a maximum assembly
power error of 1.49% and a RMS error of 0.87%. These errors are commensurate to
emmors using the correct comelation coefficients for all assemblies.

In the previous. discussion, the only differences in the various assemblies afe
values of the heterogeneous fuel cross sections. Another consideration to explore is the
change in the comrelation coefficients when the fuel temperature changes or when voiding
of water occurs in a BWR assembly. The heterogencous fuel pin cross sections uwsed in
previous sections correspond to hot zero power conditions ( 565 °K ). When the fuel
temperature is increased from 565 °K to 1000 °K, the resulting change in the correlation
coefficients, listed in Table D.17, are small. Thus, correlation coefficients have a very
weak dependency on fuel temperature changes, again, prm}idcd that the fuel temperatures
uniformly change in all fuel pins in an assembly. Listed in Table D.18 are the correlation

coefficients for the BWR assembly B with a f_:ont:rol blade inserted when the water is 40%
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voided. Comparing these correlation coefficients to Table D.10 ( 0% void ) shows
noticeable changes in the coefficients for both cross sections and edge-to-average flux
ratios. However, these changes are not much different than the changes between
assemblies with different fuel enrichments.

Still another consideration is related to burnup effects. Often, computer codes use
quadratic polynomials to keep track of intra-assembly burnup characteristics. If the burnup
is not flat throughout the fuel pins, then the correlations coefficients can show a notable
change. To test this, the heterogeneous fuel cross sections are adjusted linearly for the
BWR fuel assembly B that has the control blade inserted. Each cross section in the fuel

material is adjusted according to

%/ = £(1.126-0.025i) “.1

where i is an index for the fuel pin cell. For the far left fuel pin cells, i = 1.and for the
far right pin cells, i = 8. Thus the fuel cross sections range from a ten percent increase
to a seven and a half percent decrease in all cross sections. The fuel cross sections are
constant across a top to bottom traverse.

The correlation coefficients for this assembly are given in Table D.19. Comparing
to Table D.10, a current on the left face of the assembly does show a significant change

in the correlation coefficients for the cross sections but not a large difference for the
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edge-to-average flux ratio coefficients. Thus, the linear gradient in the heterogencous fuel
cross sections is reflected in the flux and volume weighted homogenized cross sections.
However, the linear gradient in the heterogencous fuel cross sections does not
significantly alter the manner that a current on the left boundary affects the
edge-to-average flux ratios. Comparison of Tables D.10 and D.19 also shows that a
current on the top face of the assembly produces little change in the cross section
coefficients and edge-to-average flux ratio coefficients. This is expected since the fuel
cross sections are constant in the top to bottom waverse. Because the assembly is
asymmetric, a current on the right face of the node will also create a significant change
in the cross section coefficients. These results are important because they show that
gradual changes in the heterogencous fuel cross sections do not strongly affect the
edge-to-average flux ratio correlation coefficients.

Weak Global Reactor Correlation Coefficient Dependencies

It has been pointed out in this section that computer storage requirements for
correlation coefficients can be larger than desired. This is because the correlations are
dependent on the node surface, energy group, and homogenized parameter. Finding and
removing the weak dependencies from the set of correlation coefficients can amply reduce
the storage requirements for the coefficients. This section shows that the thermal group
current-to-flux ratios do not affect the fast group homogenized parameters as much as
other effects, but this dependency is definitely nbt a weak dependency and the correlation

set must include it to obtain accurate global reactor results. One dependency that is often
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weak is the effect that a current-to-flux ratio has on a surface orthogonal to the current.
Hocher, as discussed, this effect is necessary when the material along a node surface
is not uniform, Such a case is always present in BWR fuel assemblies when a cruciform
control blade in inserted in between the BWR fuel elements.

It was also shown that the correlation coefficients are dominated by the geometry
and material arrangements in the fuel assembly. The material arrangement refers to types
of materials ( fuel, water, absorber, etc. ) as opposed to specific cross sections of similar
types of materials. This awareness provides a successful method to vastly reduce
computer storage requirements for the coefficients and, perhaps more importantly, reduce
the number of lattice homogenization solutions necessary to find a complete set of
correlation coefficients. Using identical correlation coefficients for all fuel assemblies of
similar geometries and material arrangements does not noticeably diminish the accuracy
of the global reactor solution. However, if the reactivity of each fuel pin chhngcs within
the assembly as in burnup analyses, then the correlation coefficients for the homogenized

cross sections do appreciatively change.

4.7 Conclusions from the Two-Dimensional Analyses

Global reactor information has been applied in this chapter to correlations to adjust
homogenized parameters for sample two-dimensional BWR and PWR geometries.
Reference transport theory solutions were found and presented for the two geometries for

comparison results. Also, solutions that use widely practiced nodal analysis methods
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( infinite lattice homogenized pzirameters;.o‘nlly ) weré found and comparisons were made
between the nodal solutions and the reference transport solutions.

It was explained in Section 4.5 how to find the correlation coefficients for the fuel
assemblies and how the coefficients are used in conjunction with the infinite lattice
homogenized parameters. Once l:hé coefficients were available, they were applied to the
global reactor problems to prove, numerically, that the method introduced in Chaptér 11
to compute flux discontinuity factors does account for the nodal code flux approximation
and uncertainties in the diffusion coefficients. Thus, correlating the edge-to-average flux
ratios from the lattice homogenization solution allows different flux approximations and
diffusion coefficients to produce equivalent nodal solutions ( with exception of large
values for the diffusion coefficients ). The results from these solutions showed that
applying the correlations reduces the maximum assembly power error and the RMS errors
by approximately a factor of two compared to not applying correlations.

Because adjusting the homogem‘zéd parameters is an iterative procedure,
convergence characteristics of the method were also examined in Section 4.5. The
convergence characteristics examined in this chapter are assumed to be independent of
the flux and eigenvalue convergence loops. The solutions have converged when the global
reactor information does not result in any further change to the homogenized parameters
and, thus, the upcoming global reactor solution will not change either. Because different
flux approximations in the nodal analysis and different diffusion coefficients produce

identical results ( with exception of large values for the diffusion coefficients ), it may

153




 at first seem advantageous to employ the simplest flux approximation and use haphazard
diffusion coefficients, diffusion coefficients equal to one for instance. However, a
different conclusion was found in Section 4.5. As shown in that section, employing a
more accurate flux approximation in the nodal code will require fewer adjustments to the
homogenized parameters to reach convergence than employing a simpler flux
approximation. Likewise, the nodal analysis will reach convergence with fewer
adjustments to the homogenized parameters when it uses reasonable values for the
diffusion coefficients rather than haphazard values. However, quick convergence does not
require the diffusion coefficients to be accurate. Values to only one decimal place are
sufficient.

The computer storage requirements for the correlation coefficients are criticized
in Section 4.6. Thus, the dominating influences on the correlation coefficients were found.
It was shown that the material arrangements in the assembly dominate the correlation
coefficients. If one material type replaces another, then the correlation coefficients will
drastically change. An example of this is when an absorber material replaces a location
previously occupied by water. Negligible change in the correlation coefficients will occur
when a material replaces another material of a similar type uniformly throughout the
assembly. For instance, when fuel of one enrichment replaces fuel of a different
enrichment. However, when the heterogeneous fuel cross sections have a gradient across
the assembly, the correlation coefficients for the homogenized cross sections will show

stronger dependency to the gradient. These cases occur when the nodal code models the
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intra-assembly burnhps, for example. Nevertheless, the gradient in the fuel cross sections
do not appreciably alter the edge-to-average flux ratios, but, as discussed in the first
chapter, both homogenized cross sections and flﬁx discontinuity factors have to be
adjusted simultaneously to improve global reactor rgsults.

In conclusion, comrelating the homogenized parameters to account for global
reactor effects can reduce the maximum assembly power error and the RMS errors of all
assemblies by approximately a factor of two. Also, using an accurate flux approximation
in the nodal code and reasonable diffusion coefficients lessens to number of times to
adjust the homogenized parameters to about two adjustments. Relationships between
similar assemblies can be used to reduce the computer storage requirements for the
comrelation coefficients and reduce the number of lattice homogenization calculations
required to find a complete set of correlation coefficients. It is imperative to employ the

shifted circle boundary condition to find the comelation coefficients.
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CHAPTER V
SUMMARY AND CONCLUSIONS

5.1 Overview of the Investigation

The goal of this thesis is to develop a feasible method for improving the accuracy
of homogenized parameters used in nodal diffusion theory by applying global reactor

information. The global reactor information used to improve homogenized parameters are

the currents along node boundaries relative to the average flux of the same energy group
within the node. An iterative method that uses correlations to adjust infinite lattice
homogenized parameters can fulfill this objective. This approach can contain the
adjustments to the homogenized parameters within the nodal code. Thus, nodal diffusion
theory codes can incorporate global effects into a final solution in a similar manner as
thermal feedback effects.

Common nodal diffusion theory analyses use infinite lattice homogenized
parameters without any adjustments for the global reactor information. These analyses
have been shown to provide good solutions to global reactor problems. However, some
analyses do account for global reactor information by using extended geometry
calculations to find homogenized parameters and others use a strategy that iterates
between the lattice homogenization analyses for each node and a nodal solution for the
global reactor problem. These analyses are superior to analyses using infinite lattice
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homogenized parameters only, but they are al-;so more costly and therefore less feasible
than the approach taken in this thesis. It wz;s demonstrated numerically that correlations
for the homogenized parameters are accurate and the increased cost to generate and apply
the correlations makes the method fe;asiblc.

Two computer codes were written to investigate methods to improve homogenized
parameters for nodal diffusion theory codes. One code is a lattice homogenization code
( JTC ) and the other is a nodal diffusion theory code ( NDT ). For this thesis, it is
important that the lattice homogenization code is not based on diffusion theory. This is
because lattice homogenization codes used for production analyses are based on transport
theory and because appropriate boundary conditions for transport theory lattice
homogenization are crucial Ito accurately correlate homogenized parameters. NDT is a
nodal diffusion theory code that has several different flux approximations available. Both
codes have been benchmarked and show favorable res_ults compared t0 more popular
reactor analysis codes. In the case of NDT, the simpler flux approximations show
expected results. The simpler flux approximations converge to a solution, but the power
profiles are not as accurate as the more complex flux approximations.

It was demonstrated numerically that linear correlations for the homogenized
parameters are sufficiently accurate, Cormrelations can easily be found that include higher
ordered polynomials of the current-to-flux ratio and cross product terms between
cuncnt—to-ﬁux ratios from different energy groups or surfaces of the node. However,

including these terms will obviously make the method to improve homogenized
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parameters mote expehsive becausé of the large number of lattice homogenization
-ca.lculations required to form such a set of coﬁclations.

In Chapter I, it was emphasized that flux disbontinuity factors should not be
correlated as homogenized parameters, but that edge-to-average flux ratios from the
homogenization analysis should be correlated. In the case of infinite lattice homogenized
parameters, the two are equal and there is no need to distinguish between them. However,
when adjusting the homogenized parameters to reflect effects of the global reactor
solution, there are several reasons for this distinction. First, flux discontinuity factors
cannot be apcuratcly modeled by a linear correlation but the edge-to-average flux ratios
from the lattice homogenization can. If the edge-to-average flux ratio from the lattice
homogenization is known by a correlation or any other method, then the flux discontinuity
factor can be easily found. Also, when a current is present on any surface of the node,
the flux discontinuity factor is dependent on the flux approximation in the nodal code and
the diffusion coefficient. The edge-to-average flux ratio from the lattice homogenization
is completely independent of the nodal code flux approximation and me diffusion
cocfficient. Thus, comrelating the edge-to-average flux ratio can allow the nodal code to
account for the flux approximation and diffusion coefficients that it is using. Koebkes'
postulates state that equivalence theory should preserve the lattice homogenization edge
fluxes and average flux. They do not state that equivalence theory should preserve the

flux discontinuity factor.
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A new assembly boundary condition named the shifted circle boundary condition
was introduced in this thesis. In an x-y coordinate system, this boundary condition causes
the angular flux shape to be circular about a point to the left or right of the origin. Linear
correlations for the edge-to-average flux ratio are accurate provided that the lattice
homogenization code uscs. this boundary condition to create a current along a node
boundary necessary to find the correlation coefficienfs. A numerical analysis demonstrated
that the albedo boundary condition in transport theory codes is capable of crcatin.g a
current but it does not accurately model the scalar flux profile near the node boundary.
This causes the edge flux to be faulty and, thﬁs, the edge-to-average flux is also faulty.
These inaccurate values lead to crrant correlation coefficients for the edge-to-average flux
ratios. It was also demonstrated numerically that the shifted circle boundary condition
does model the scalar flux profile near the node boundaries accurately. This results in
finding accurate correlation coefficients for the edge-to-average flux ratios.

In two-dimensional problems that represent small portions of a BWR and PWR
reactor, the linear correlations for the homogenized parameters were shown to reduce the
maximum and root mean square errors in assembly powers by a factor of two. It was
demonstrated numerically that with the correlations, different flux approximations in the
nodal code and different diffusion coefticients all result in identical final solutions to the
global reactor problem. However, it was pointed out that a final solution. rapidly

converges when a more accurate flux approximation is used in the nodal code along with
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reasonably accurate diffusion coefficients. With these conditions, practical convcrgcncc
is reached in only two adjustments to the homogenized parameters.

Sensitivity of the correlations to the material arrahgcmcnt in the fuel assemblics
and the heterogeneous cross sections was examined. This investigation showed that
correlations are strongly dependent on the_ fuel assembly geometry and the material
arrangement in the fuel assembly. Th.e material arrangement refers to materials of a
similar type being in identical locations in the fuel assembly. A numerical analysis
showed that inserting a control blade in a BWR assembly, for instance, will greatly alter
the correlation coefficients. The analysis also showed that altering the cross sections
uniformly throughout the assembly does not significantly alter the correlation coefficients.
This dependency is important because it allows correlations to be found for one assembly
and used for all assemblies of similar geometrics and material arrangements. This
significantly reduces the cost of generating and storing the correlation coefficients and
makes the method to incorporate global effects into thé homogenized parameters more
feasible.

As emphasized in the thesis, employiﬁg correlations to the infinite lattice
homogenized cross sections and the infinite lattice edge-to-average flux ratios from the
lattice homogenization code can account for deficiencies in the nodal code flux
approximation and ambiguities or uncertainties in the diffusion cocfﬁcients. Although
correlations relieve apprehensions for the nodal code, it does, unfortunately, elevate

worries for the lattice homogenization code. In particular, there are concems about the
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boundary condition wsed to create a current on a node surface and find correlation

coefficients. The shifted circle boundary condition was developed to provide a boundary
condition that accurately predicts the flux on the surface of a node and creates a current

on the surface.

5.2 Recommendations_for Future -Work

The results of this thesis open f.hc'ddor to other rescarch avenues in lattice
homogenization and nodal diffusion theory. These queries are beyond the limits of the
computer codes JTC and NDT and should be investi gﬁted using more common production
based computer coldcs.-

The shifted circle boundary condition was successfully implemented in the discrete
ordinates transport theory code JTC. However, most lattice homogenization codes use
integral transport theory; either collision probabilities or the method of characteristics. The
shifted circle boundary condition should also be applied to these analysis techniques.

Unlike the analyses in this thesis, lattice homogenization codes used for production
analysis cmploy an energy group structure with twenty to eighty energy groups and then
collapse the multigroup structure to two broad groups. Further research should explore
how to place currents iri a multigroup structure and then collapse the energy group
structure ( including currents )} to two broad groups. For example, three different
possibilities may be to i) place a current in only one fine group, ii) place an equal

current in each fine group of a broad energy group, or iii) place a current in each fine
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group of a broad energy group based on the flux spectrum of the fuel assembly. Although
reason warrants the latter example to be the. obvious choice, there may be better choices.

Burnup dependencies of the. cong!apions should alsp Tequire a more thorou.gh
examination. Research in this area shéuld_conccntratc on the intra-nodal burnup shape of
the fuel and burnup of burnable absorber pins -.Such as Gadolinium; Although a segment
of the thesis touched oi.i an intra-nodal burnup shape, ]t did not test the correlations to a
reference solution. Additionally, the depletion of a strong absorber material in the fuel
was not examined in the thesis.

Finally, the mcihod should be applied and benchmarked against experimental data
for a full core analysis. These studies should includé application of the method to the
baffle/reflector regions in the reactor. Also, studies using a three-dimensional model

should be performed.
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JTC BENCHMARK RESULTS
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Figure A.1. Geometry Description of the BWR Rod Bundle
Benchmark Problem.
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Table A.1. Two-Group Material Cross Sections for the BWR Rod Bundle Benchmark

Problem. cm™

Z,

Material Group E, vE, I B
1 1 8.983¢-03 2281603 5.925¢-03 2.531e-01 1.069¢-02
2 5.892¢-02 4.038¢-02 9.817e-02 5.732¢-01
2 1 8.726e-03 2.003¢-03 5.242e-03 2.536¢-01 1.095e-02
2 5174e-02  3.385¢-02 8.228e-02 5.767e-01
3 1 8.587¢-03 1.830e-03 4.820e-03 2.535e-01 1.112¢-02
2 4717e-02  2962e-02 7.200e-02 5.797¢-01
4 1 8.4802-03 1.632¢-03 4.337e-03 2.533e-01 1.113e-02
2 4.140¢e-02 2.428e-02 5.900¢-02 5.837¢-01
5 1 9.593e-03 2.155¢-03 5.605e-03 2.506e-01 1.016e-02
2 1.626e-01 9.968¢-03 2.424¢-02 5.853¢-01
Assembly 1 1.043¢-03 0 2.172e-01 9.095¢-03
Wall 2 4.3942-03 0 0 4.748e-01
Water 1 1.983e-04 0 2.476e-01 3.682¢-02
Gap 2 7.796e-03 1.123e+00
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Table A.2. Two-Group Fluxes from JTC using 4x4 Mesh Spacing and §, Angular Quadrature.

0.1736
G.1123
0.1752
0.1089
0.1775
0.1041
0.1844

$.0539

0.1924
0.0810
0.1957
0.0733
0.1969
0.0697
0.1977
0.0707
0.1971
0.0748
6.1930
0.0823
0.1891
0.0884
0.1830

0.0509

0.1741 01766 01794 01796 01782 01761 01726  0.1663  0.1616
0.1108  0.1060 00996 00958 00952 00993 01069  0.1182  0.1265
01760 01791 01821 01822  0.1808 01787  0.1752  0.1686  0.1633
01065 01010 00942 00904 00898 00940 01018  0.1135  0.1225
0.1790  0.828  0.1862  0.1863  0.1848 01827 01791  0.1720  0.1658
0.1006 00945 00874 00836 00830 00873 00952 01074  0.1169
0.1865 | 01925 | 01968 | 01964 | 01942 | 01925 | 01892 | 0.1808

0.0002 | 00825 | 00736 | 00704 | 00600 | 00743 1 00828 | 00959
01049 | 02020 | 02060 | 02049 | 02010 | 02016 | 0.1984

00771 | 00686 | 00604 | 00553 | 0050z | 00587 | 0.0685

01982 | 02047 | 02081 | 02083 | 02060 | 0.2056

00694 | 00606 | 00518 | 00490 | 00481 | 00518

0.1993 | 02051 | 02060 | 02093 | 02092

0.0658 | 00564 | 00446 | 00456 | 0.0464

02001 | 02066 | 02100 | 02104

00668 | 00581 | 00493 | 0.0465

01995 | 02065 | 02107 Group 1

00709 | 00624 | 0.0543 Group 2

01953 | 02016

00785 | 00706

0.1507

0.0850

0.1602
0.1296
0.1614
0.1267

0.1592
0.1318




Table A.3. Comparison of JTC to the Refererice Solution ( DOT-III ) and the
TWOTRAN-II Code. All Solutions used a 4x4 Mesh Spacing and §; Angular
Quadrature,

Flux ratio®
k-eff maximum minimum
DOT-IT 1.08714
TWOTRAN-TI 108727 1.007 ¢.980
ITC 108590 1.012 0.977

2The flux ratio is the flux from JTC or TWOTRAN divided by DOT.
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Figure B.1. Radial Geometry Description of the 3-D IAEA
Benchmark Problem. Material 3" is a Partially Inserted Control
Rod. NDT uses a Zero Scalar Flux Boundary Condition rather

than No Incoming Partial Current.
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Figure B.2. Axial Geometry Description of the 3-D IAEA
Benchmark Problem. Material 3" is a Partially Inserted Control
Rod. NDT uses a Zero Scalar Flux Boundary Condition rather

than No Incoming Partial Curmrent.
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Table B.1. Two-Group Material Cross Sections for the 3-D IAEA
Benchmark Problem. cm™

Material Group D (cm) 3, vE, 2,

1 i 15006400  1000e:02 0 2,000e-02
2 4.000e-01 200002  1.350e-01

2 1 1.500e+00  1.0006:02 0 2.000e-02
2 4000e-01 3500602 1.350e-01

1.500e+00 1.000e-02 0 2.000e-02
2 4.000e-01 1.300e-01 1.350e-01

‘
e
o

4 1 2.000e+00 0 0 4.000e-02
2 3.000e-01 1.000e-02 0 '

5 1 2.000e+00 0 0 4.000e-02
2 3.000e-01 5.500e-02 0




i
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Table B.2. Assembly Power Densities for the 3-D IAEA Benchmark Problem.

0.597

0.599

0.598

0.514

0.461

Eigenvalue 0.585 '

VENTURE 1.02903 0.476 0.700 0.611
QUANDRY 1.02902 0475 0.705 0.615
IQSBOX 1.02011 0474 0.703 0611
NDT FD. 1.03158 0.364 0.738 0.504
NDT Quadratic 1,02822 0.447 0.650 0.483
NDT Quartic 1,02889 0.472 0.697 0.601

1178|0972 | 0923 | 0:866
1178|0972 0924 | 0869
1179 {0972 0926 | 0866
1237|1006 | 0921 | 0786
1.241 1.011 0888 | 0.733
1285 10976 | 0919 | 03855
1368 1311 | LI8I 1.080 1000 | 0710
1366 1311|1180 1088 | 099 |01
1366 1311 | 1181 1087 | 0895 | 0707
1.409 i364 [ 1.188 108¢ | 1025 |0577
1.466 1396 | 1.239 1072 {0922 | 0563
1.378 1322 1185 . | 1087 | 0990 | 0.69
1307 1432 1291 1.072 1055 [ 0976 | 0.757
1392 1.429 1288 1071 1053 | 0973 | 0.754
1398 1.431 1291 1072 105 | 0974 | 0752
1495 1510 1371 1.098 1069 | 0943 | 0.686
1.546 1.567 1.395 1.137 1055 | 0918 | 0.653
1.408 1443 | 1209 | 1.080 1053 | 0966 | 0741
0729 1.281 1.422 1.193 0610 [0033 | 095 | 0777
0.731 1276 1.416 1190 | 0611 0952 | 0957 |o772
0.726 1282 1423 1194 | 0608 (0953 |o09s8 |0770
0.658 1.387 1.494 1302|0507 |0997 |0928 |0.706
0.772 1.443 1.588 1318|0610 | 0966 | 0921 0.687
0.735 1.297 1433 1203 | 0.611 0956 10952 | 0762
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APPENDIX C

ERRORS IN THE ONE-DIMENSIONAL ANALYSIS

Section C.1. Coupling Errors
Section C.2. Boundary Condition Errors

Section C.3. Polynomial Fitting Coefficients and Errors
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Section C.1. Coupling Errors
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Table C.1. Errors in the Reconstructed Homogenized Parameters due to Energy Group

Coupling.
BWR
Group &, vI; Z .
1 -1.26894¢-05 8.08371e-06 1.93972e-05
2 -1.07541e-04 4.42317¢-05
Flux Discontinuity Factor Edge-to-Average Flux Ratio
Group Left Right Left Right
1 -1.80422e-03 2.55972¢-04 -8.27879¢-04 9.97523e-04
2 -2.73056¢-02 -6.51913-03 -2.88513e-03 2.95798¢-03
PWR
Group x, vI; E, 2
1 -1 ;87684e—05 -1.01935e-06 3.24281e-05
2 -1.38040¢-04 -2,13392¢-05
Flux Discéntihuny Factor Edge-to-Average Flux Ratio
Group Left Right Left | Right
1 -1 .‘?6?_36e-03 1.26516e-03 -1.01760e-03 1.14814¢-03
2 -1.50626¢-02 75625203 279936603 2 66948¢-03
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Table C.2. Errors in the Reconstructed Homogenized Parameters due to Node Face

Coupling.
BWR
Group z, vE P
1 -2.01164e-05 -4.00817e-05 1.67031e-05
2 -3.35163e-05 -1.02004e-04
Flux Discontinuity Factor Edge-to0-Average Flux Ratio
Group Left Right Left Right
1 -1.69290e-03 -4.33537e-03 "8.57928e-04 -5.15076e-04
2 -7.13450e-03 -7.70431e-03 9.23068e-04 -1.33473e-04
PWR
Group Z, vE, Z, .,
1 2.08988e-05 3.9317%-06 -3.49225e-05
2 2.99248e-05 6.40176¢-06
Flux Discontinuity Factor Edge-to-Average Flux Ratio
Group Left Right Left Right
1 -7.24879¢-(4 -4.11275e-03 1.33145e-03 -1.08989¢-03
2 -1.34768¢-02 -1.33253e-02 . 6.55?9&-{}4 -3.84721e-04
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Section C.2 Boundary Condition Errors
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Table C.3. Errors in the Reconstructed Homogenized Parameters due to using Albedo
Boundary Conditions to Create the Reference Currents.

BWR
Group x, v, E ..
1 3.14735e-04 3.52483e-04 -3.25981¢-04
2 1.52710e-04 3.99891e-04
Edge-to-Average Flux Ratio
Group Left Right
1 2.37042e-02 1.58470e-02
2 -1.30799¢-02 3.90914¢-03
PWR
Group I, vI; Z.
1 -1.93771e-05 -2.81050e-05 2.36974e-05
2 -4.63351e-05 -2.98749e-05
Edge-to-Average Flux Ratio
Group Left | Right
1 -1.78681e-02 1.306%4e-02
2 -1.47031e-02 1.06456e-03
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Table C4. Emors in the Reconstructed Homogenized Parameters due to using Shifted
Circle Boundary Conditions to Create the Reference Currents.

BWER
" Group B, vE, Z 2
1 2.33350e-05 2.47564¢-05 -2.47853¢-05

2 1.74241e-05 1.62484e-05

Edge-io-Average Flux Ratio

Group Left Right
1 1.26522¢-04 -1.05072e-03
2 3.24824e-04 -3.34566e-04
PWR
Group Z, vE; X
1 -4,36238¢-06 -1.23779¢-05 3.11808e-06
2 1.83410e-05 -7.11306¢-07

Edge-1o0-Average Flux Ratio

Group Left Right
1 7.03570e-04 -5.12517e-03
2 1.98285¢-04 4.25531e-03
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Section C.3 Polynomial Fitting Coefficients and Errors
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Table C.5 Polynomial Coefficients Corresponding to the Group 1 Curmrent-to-Flux Ratio

on the Left Boundary of the BWR Geometry.

a, A 2, a,
2, -0.09445 -0.06274 0.09178 -0.07591
3, 0.04681 -0.16036 0.17911 -0.06233
VI, -0.16755 0.02701 -0.00269 -0.02464
VI, -0.14128 0.04583 0.01793 -0.05978
2, 0.08128 0.09057 -0.12304 0.10403

&, 5.90235 424340 4.29856 -2.20409

o™, 4.30295 -4.42099 3.44129 0.28235

& ™, -2.37479 3.51266 -3.89479 2.39307

T -2.30869 3.15384 -2.86095 0.27543
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Table C.6 Polynomial Coefficients Corresponding to the Group 1 Current-to-Flux Ratio

on the Right Boundary of the BWR Geometry.

a B 2 B
2, 020213 0.11055 0.16516 0.31283
., 0.19948 027124 0.50113 1.02689
v, 0.16953 0.03094 0.01915 0.02800
VI, 0.12596 007179 0.07173 0.11955
2, .2 -0.22407 -0.13886 -0.21451 041611
N 217374 3.62489 6.64266 13.10330
o™, 2.52156 485309 995397 21.23110
o™, -5.03891 -3.73229 -6.32901 -12.35860
/6™, -3.06169 -4.43969 .-8.48237 -17.68940
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Table C.7 Polynomial Coefficients Corresponding to the Group 2 Current-to-Flux Ratio
on the Left Boundary of the BWR Geometry.

a, 3, 2 a,
2, 0.00129 -0.00207 -0.00107 0.01073
I, -0.11769 -0.01303 -0.00148 -0.01434
vE, -0.01068 -0.00351 -0.00123 -0.00560
vE,, -0.27239 0.00773 0.00299 -0.077M1
3,1 -0.00454 0.00174 0.00072 -0.00717

0™, 0.63201 0.09883 0.01726 0.58075

/O™, 5.23383 -045630 -0.07374 2.63801

o™, -0.43038 -0.04127 0.00077 -0.48436

IO, -1.26198 0.29846 0.04384 -1.05128
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Table C.8 Polynomial Coefficients Corresponding to the Group 2 Current-to-Flux Ratio
on the Right Boundary of the BWR Geometry.

Ay ik a3 a,

.. 0.01999 -0.00466 0.00146 0.00537
z,, 0.22511 0.02296 -0.00067 -0.02152
vE;, 0.01102 -0.00338 0.00123 -0.00560
vZ,, 0.26752 0.00623 -0.00060 -0.05380
2,2 -0.02369 0.00506 -0.00143 0.00000
/0™, 0.41926 -0.03767 0.00361 0.24780
N 138968 0.40051 -0.01051 0.43403
L -0.53582 0.08913 -0.02285 -0.19066
A -4.21392 -0.36894 000105 0.33633
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Table C.9 Polynomial Coefficients Corresponding to the Group 1 Current-to-Flux Ratio

on the Left Boundary of the PWR Geometry.

a, H a; ay
2, 0.05994 -0.08535 0.10092 -0.08744
2., 0.13923 -0.18099 0.16243 -0.05824
vE,, 0.01603 -0.00414 0.00049 0.00291
vE,, 0.02962 -0.02691 0.02090 -0.00950
2, 2 -0.09855 0.14701 -0.17521 0.14497
& ™, 557736 -5.41940 6.09532 -5.20818
I, 4.03685 -3.99446 323679 -0.79938
6™, -2.67950 4.39067 -5.47837 4.82635
&' 1™, -2.16470 2.92457 -2.72999 0.99927
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Table C.10 Polynomial Coefficients Corresponding to the Group 1 Current-to-Flux Ratio

on the Right Boundary of the PWR Geometry.

N :

a, 8 8
Z,, 0.03589 0.07538 0.14478 0.28468
z,, 0.12285 022432 0.46659 097719
vEe, -0.01670 -0.00437 -0.00223 -0.00097
vIa 0.00757 0.02789 0.06127 0.12824
Z, . -0.06830 -0.13243 -0.25142 -0.509467
oSO, 246218 447561 8.66217 17.35940
& S0™, 241831 4.71250 10.02440 21.63910
" ™, -4.68053 -4.65013 . -8.18431 -16.16090
¢ ™, -2.77264 -4.04205 -§.14651 -17.36620
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Table C.11 Polyndnﬁal Coefficients Corresponding to the Group 2 Current-to-Flux Ratio

on the Left Boundary of the PWR Geometry.

a,

a By a,
Z,, 0.01110 -0.00186 0.00047 -0.00474
3,, 0.04226 002014 0.00194 -0.01941
vE,, 0.00234 0.00012 0.00000 0.00000
VI, 0.03450 -0.00351 0.00095 -0.01900
)3 -0.01847 0.00336 -0.00083 0.00000
T 0.86980 -0.10045 003489 -0.10709
o™, 5.76812 -0.50424 0.13000 -1.31824
&I, -0.50399 0.10646 10.02269 -0.01260
A6, -1.03322 031865 -0.06066 0.11062
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Table C.12 Polynomia_i Cocfficients Corresponding to the Group 2 Current-to-Flux Ratio

on the Right Boundary of the PWR Geometry.

4 i, Ay Ay
z,, 0.00758 - 0.00187 ~ 0.00034 -0.00610
z., 0.05376 0.02165 0.00518 -0.03883
vE, -0.00243 0.00023 0.00000 0.00194
vE,, -0.02309 0.00211 0.00000 0.00950
Z - -0.01405 -0.00314 -0.00041 0.012426
/o™, 0.48322 0.10409 0.01755 -0.24735
N S 1.14604 043717 0.10064 -0.57183
"™, -0.73311 -0.06784 -0.01859 0.36864
™, -4.57186 -0.43706 -0.08595 2.46048
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Table C.13. Errors in Homogenized Parameters found by Reconstructing all terms of the

Fourth Order Power Series.

BWR

Group E, vE, I
1 -1.16664e-05 -1.38155¢-06 1.37285e-05
2 -8.85129¢-05 | ~1.71746¢-05
Edge-to-Average Flux Ratio
Group Left Right
1 -1.52900e-04 -2.41347e-04
2 -1.29092¢-03 1.63480e-03
PWR
Group Z, vI, E a2
1 -1.41551e-05 9.60762e-06 1.90031e-05
2 -7.51781e-05 -1.50584¢-05
Edge-to-Average Fhix Ratio
Group Left Right
1 28543 1e-04 -4.12472e-03
2 -1.61748¢-03 6.21004¢-03
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Table C.14. Errors in Homogenized Paramcters ‘found by Reconstructing the Quadratic
Terms of the Power Series.

BWR
Group 2, vE, Iz
1 -7.54204e-06 - -1.38949¢-06 8.23123e-06
2 -1.927145e-05 - -1.61646e-035
Edge-to-Avaage Flux Ratio |
Group Left Right
1 -6.63628e-07 -4.49072¢-04
2 -1.14587e-03 1.45896e-03
PWR
Group £, v, Z .
1 -1.17642e-05 -9.61671e-06 1.48224¢-05
2 -6.95559¢-05 -1.43210e-05
Edge-to-Average Flux Ratio
Group Left Right
| 4.07032e-04 4.28176e-03
2 -1.51952¢-03 6.10596e-03

i 1
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Table C.15. Emrors in Homogenized Parameters found by Reconstructing the Linear
Terms of the Power Series. '

BWR

Group z, vE Z, s
1 -3.84623e-05 3.69566e-05 5.95128e-05
2 -1.63229¢-04- 5.84802¢-05
Edge:to-Average Flux Ratio )
Group Left. Right
1 -2.67705¢-03 2.57943e-03
2 -3.70425e-03 3.72903e-03
PWR
Group z, vE L4
1 -3.11143¢-05 -1.35146e-05 4.74132e-05
2 -8.76080¢-05 -1.93027e-05
Edge-to-Average Flux Ratio
Group Leit Right
1 -7.28253e-04 -3.43684e-03
2 -1.93870e-03 6.23906e-03
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APPENDIX_ D

TWO-DIMENSIONAL BWR AND PWR HOMOGENIZED
PARAMETERS AND CORRELATION COEFFICIENTS

Section D.1. Infinite Lattice Homogenized Parameters

Section D.2. Correlation Coefficients
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Section D.1. Infinite Lattice Homogenized Parameters
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Table D.1. Infinite Lattice Homogenized Parameters for the BWR Fuel Assembly A.
( The most reactive BWR assembly. )

BWR without control blade inserted

Group D (cm) ﬁ, {cm™) vI; (em™) I, ., {em™)
1 1.425735¢+00 ?.?8593'&-03 5.419602¢-03 1.842649¢-02
2 3.906145¢-01 7.249943¢-02 9.348392¢-02 :
FDF or Edge-to-Average Flux Ratio
Group _ Léﬁ Right Top Bottom :
1 0.563055 0.863334 0.863334 0.963055
2 1.265587 1.510890 . - 1.510891 1.265588
BWR with control blade inserted
Group D (cm) =, {em™) vE; (em™) 2, .., em™)
1 1.423138e+00 8.067234e-03 5.4293932-03 1.763250e-02
2 4.036315e-01 8.313203e-02 1.006144e-01 .
FDF or Edge-to-Average Flux Ratio
Group Left Right Top Bottom
1 0.993915 0.843372 0.843372 0993915
2 1530324 0.901964 0.901963 1.530323
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Table D.2. Infinite Lattice Homogenized Parameters for the BWR Fuel Assembly B.

BWR withont contrel blade inserted

Group D (cm) I, (em™) v, (cm™ I, ., {(cm™)
1 1.424528e+00 7.529099¢-03 4.923361e-03 1.862690e-02
2 13.898094¢-01 6.755748¢-02 8.265275¢-02
FDF or Edge-io- Average Flux Ratio
Group Left Right Top Bottom
1 0.955802 0.871155 0.871155 0.955802
2 1.243491 1450460 1.450458 1.243490
BWR with control blade inserted
Group D (cm) 2, (em™) v, (em™) 2, .., (em™)
1 1.421805e+00 7.813358e-03 4.93095%¢-03 1.782263e-02
2 4.020903e-01 7.709636e-02 8.810635¢-02
FDF or Edge-to- Average Flux Ratio
Group Left Right Top Botiom
1 0.988646 0.848375 0848375 0.988646
2 1.496791 0.863472 0.863472 1.496793
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Table D.3. Infinite Lattice Homiogenized Parameters for the BWR Fuel Assembly C.
( The least reactive BWR assembly. )

BWR without control blade inserted

Group D (cr) L, (em) v, (em™) 2, .., (em™)
_. 1 1.423612e400 7.243206e-03 4368581e-03 1.883679¢-02
'f 2 3.880204e-01  6.140771e-02 6.923273-02

“FDF or Edge-io-Average Flux Ratio

, Group Left Right Top ' Bottom
' 1 0.955649 0.868517 0.868517 0.955649
';: 2 - 1.214204 ©1.385712 1385713 1.214205

: BWR with control blade inserted

Group D (cm) T, em™ vZ, (cm™) 2, .. em?)
e 1 1.420907e+00 7.525873e-03 4.375117¢-03 1.803560¢-02
2 3.996334¢-01 7.013191e-02 7.360122¢-02

FDF or Edge-to-Average Flux Ratio

Group Left Right Top Bottom
1 0988621 0.345818 0.845818 0.988621
2 1.458176 0.822314 0.822314 1458178
]
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| Table D.4. Infinite Lattice Horiiogenized Parameters for the PWR Fuel Assembly D. ( The
! most reactive PWR assembly. )

PWR without control rod cluster inserted

Group D (cm) 2, {cm™) vE; (cm™) 2, ., (em™
1 1.3641946+00 9,326510¢-03 6.675741e-03 1.710559¢-02
2 4.232055¢-01 9.302914e-02 1.341296e-01

. FDF or Edge-to-Average Flux Ratio

Group Left Right  Top Bottom
1 1.010410 1010410 1.010410 1.010410
2 0.913214 0913214 0913214 (¢.913214

.

PWR with control rod cluster inserted

Group D (cm) T, (em™) v, (cm™ Z, ., (cm™)
i | .36395_3 e+0i} 9.628238¢-03 6.675666¢-03 1.635417e-02
2 4,303007e-01 1.019187e-01 1.359635e-01

FDF or Edge-to-Average Flux Ratio

Group Lefi Right Top Bottom

1 1.015190 1.015190 1.01519%0 1.015190

H 2 0.982730 0982730 0.982730 0.982730
£
i
|
ik
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Table D.5. Infinite Lattice Hoimogenized Parameters for the PWR Fuel Assembly E.

- PWR without control rod cluster inserted

Group D (cm) Z, (cm™) vE (em™) I, . (em)
1 1.362365¢+00 8.989660¢-03 6.018026¢-03 1.735948¢-02
2 4.198997¢-01 8.418949¢-02 1.148353¢-01

FDF ar Edge-to-Average Flux Ratio

Group Left Right Top Bottom
1 1011197 ©1.011197 1011197 1011197
2 0921738 0921738 0921738 0.921738
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Table D.6. Infinite Lattice Homogenized Parameters for the PWR Fuel Assembly F. ( The
least reactive PWR assembly. )

PWR without control rod cluster inseried

Group D (cm) Z, (co’™) v, (em’™) Z, ., em™)
1 1.361445e¢+00 - 8.635555e-03 5.336659¢-03 1.762240e-02
2 4,156903¢-01 7.500172¢-02 9 483869e-02

FDF or Edge-to-Average Flux Ratio

Group Left Right Top Bottom
1 1.012120 1.012120 - 1.012120 1.012120
2 0930995 - 0930005 _ 0.930995 0.930995
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Section D.2. Comrelation Coefficients
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Table D.7. Correlation Coefficients for the BWR Fuel Assembly A without the Control
Blade Inserted.

J¢™ Effecting the Homogenized Parameter

{ Boundary and Energy Group )
Left 1 Left 2 Top 1 Top 2
Effected cross seciion

3,, -1.08757e-01 8.55787e-04 -2.97352¢-01 -2.37569¢-02
2., 8.42863e-03 8.83636¢-02 -2.20147¢-01 -2.67252¢-01
vZ,, -1.16166¢-01 3.26010e-03 -3.55861e-01 -2.97003e-02
vE, 3.66247e-02 -1.19639¢-01 -3.88471e-01 -4.71800e-01
) 2.93738¢-02 -8.72185e-03 2.28002e-01 1.88116¢-02

Effected Edge-to-Average Flux Ratio ( Bou.ndar.y and Energy Group )
Left 1 4,80559+00 7.14579¢-01 9.37352¢-02 1.12721e-02
Left 2 3.11744e+00 5.59555¢400 -1.43426e-01 -1.73562¢-01
Right 1 -1.98108e+00 51251901 3.09848e-01 2.29484¢-02
Right 2 ~ -1.87836e+00 -1.42732e+00 2.31551e-02 -2.69872¢-01
Top 1 3.63936e-01 1.36465e-02 5.85365e+00 5.89987¢-01
Top 2 1.88219¢-01 -1.74023¢-01 3.62447e+00 5.27790e+00
Bottom 1 6.86386e-02 © -1.10078e-02 -2.40202e+00 -4.53316e-01
Bottom 2 <2.54366e-02 -1.07328e-01 -2.70685e+00 -1.63738e400
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Table D.8. Correlation Coefficients for the BWR Fuel Assembly A with the Control Blade

Inserted.
Ji¢™ Effecting the Homogenized Parameter
{ Boundary and Energy Group )
Left 1 Left 2 Top 1 Top 2
Effected cross section
I, -1.55604e-01 -1.08532¢-02 -1.71059¢-01 -7.31090e-03
z,, -1.67860e-01 -2.25186e-01 9.63735e-02 9.58112e-02
v, -1.30936e-01 -7.18495¢-04 -3.55661e-01 -1.738062-02
vI, -8.07943¢-02 ¢2.0661 le-01 -2.13790e-01 -2.82532e-01
Z, .. 9.22175e-02 | 5.92557e-03 8.62978¢-02 3.11844e-03
Eifected Edge-to-Average Flux Ratio ( Boundary and Energy Group )
Left 1 4.53430e+00 5.84044¢-01 -1.16961e-02 4.66340¢-02
Left 2 2.69726e+00 4.41479e+00 1 35414e-01 9.81317e-02
Right 1 -1.88650e+00 -4.27988e-01 4.78463e-01 -4.55870e-02
Right 2 -2.06945e+00 -1.39982e+00 -3.70529e-01 -3.34421e-01
Top 1 5.54477e-01 5.17565e-02 5.73997e+00 3.7021Re-01
Top 2 1.01009e+00 3.98560e-01 3.64876e+00 537215e+00
Bettom 1 -9.52913e-02 -4.65017e-02 -2.13367e+00 -2.67344¢-01
Bottom 2 -3.69942e-01 -3.186566-01 -1.97798e+00 -9.24231e-01
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Table D.9. Correlation Coefficients for the BWR Fuel Assémbly B without the Control
Blade Inserted.

1/¢* Effecting the Homogenized Parameter
( Boundary and Energy Group )

Left 1 Left 2 Top 1 Top 2
Effected cross section

Z.. -1.10109-01 1 .ﬁOﬁ? 1e-03 -2.75749e-01 -2.4622%e-02
Z,: -9.30016e-03 -1.01621e-01 -1.49686¢-01 -2.26036e-01
vi;, -1.26860e-01 1.05%915¢e-03 -3.16216e-01 -2.82279¢-02
vE;, 8.28639¢-03 -1.45865¢e-01 ~2.81021e-01 -4.24078e-01
2,2 2.67541e-02 -9.63754e-03 2.08841e-01 1.97294e-02

Effected Edge-to-Average Flux Ratio { Bou.ndary and Energy Group )
Left 1 4.8596%@_ 7.55514e-01 1.03818e-01 -6.22768e-04
Left 2 3.06499¢+00 5.81576e400 -8.05305e-02 -1.47861e-01
Right 1 -1.99450e+00 -5.4390%¢-01 3.04998e-01 -3.70688e-03
Right 2 -1.89521e+00 -1.52806e+00 1.78834e-02 -2.55071e-01
Top 1 3.12959¢-01 -1.83499¢-03 5.43237¢+00 6.19646¢-01
Top 2 1.60379¢-01 -1.81465¢-01 3.1372%e+00 5.34459e+00
Bottom 1 1.06476e-01 -2.80237e-04 -2.07036e+00 -4,7902%e-01
Boitom 2 -8.215?4&03i . ~1.03279e-01 . -2.20756e+00 -1.60520e+00
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Table D.10. Correlation Coefficients for the BWR Fuel Assembly B with the Control

Blade Inserted.
Y¢™ Effecting the Homogenized Parameter
{ Boundary and Energy Group )
Left 1 Left 2 Tep 1 Top 2
Effected cross section
Z,, -1.59652¢-01 -1.21782e-02 -1.58381e-01 -6.66829-03
Z.. -1.77786e-0} -2.40452¢-01 1.40663e-01 1.34091e-01
vE;, -1.40136e-01 -2.52070e-03 -3.37866e-01 -1.65250e-02
vE;, -9.48347e-02 -2.19531e-01 -1.71181e-01 -2.70480e-01
iz 9.11702e-02 .6.3_10493-03 7.92786e-02 2.73571e-03
Effected Edge-to-Average Flux Ratio ( Boundary and Energy Group )
Left 1 4.56772e+00 6.18300e-01 -2.08520e-03 4.24002e-02
Left 2 2.64683e+00 - 4,60821e+00 1.80528e-01 1.21772e-01
Right 1 -1.89412e+00 -4.55605e-01 4.76336¢-01 -3.69565e-02
Right 2 -2.0642?e+00 -1.49411e+0( -4.19471e-01 -3.46080e-01
Top 1 5.17903e-01 4.40518e-02 5.85336e+00 3.86650e-01
Top 2 9.90963e-01 4.39334e-0] 3.83413e+00 5.68549e+00
Bottom 1 " -6.93860e-02 -4.23893e-02 -2.36089+00 -2.82463e-01
Bottom 2 -3.53142¢-01 -3.27053e-01 -2.10750e+00 9.71102¢-01
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Table D.11. Correlation Coefficients for the BWR Fuel Assembly C without the Control

Blade Inserted.

1™ Effecting the Homogenized Parameter

¢ Boundary and Energy Group )

Left 1 Left 2 Top 1 Top 2
Effected cross section
Z.. -1,10855¢e-01 1.31497e-03 -2.83504e-01 -2.57649¢02
., -1.12466e-02 -1.00751e-01 -1.38513e-01 -2.17977e-01
v, -1.28597e-01 1.41951e-03 -3.26986e-01 -2.97000e-02
v, 6.36280e-03 -1.50975¢e-01 -2.86224e-01 -4.47727e-01
20 2.60508e-02 -1.02219e-02 2.11201e-01 2.03528e-02
Effected Edge-to-Average Flux Ratio ( Boundary and Energy Group )
Left 1 4.84597e+00 8.00625;&01 9.77686e-02 -9.32130e-04
Left 2 2.96433e+00 6.10437e+00 -8.37793e-02 -1.46023e-0}
Right 1 -1.97048e+00 -5.81445¢-01 3.21763e-01 -3.175556-03
Right 2 -1.86268e+00 -1.64542e+00 3.50988e-02 -2.51646e-01
Top 1 3.22176e-01 -1.19132e.03 5.72395e+00 6.63063e-01
Top 2 1.61662e-01 -1.78437e-01 3.42597e+00 5.88990e+00
Bottom 1 1.05988e-01 -6.30980e-04 -2.32255e+00 -5.17160e-01
Boitom 2 -1.1710%¢-02 -1.02089e-01 -ﬁ.46621e+00 -1.78015e+00
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Table D.12. Correlation Coefficients for the BWR Fuel Assembly C with the Control

Blade Inserted.

Ji¢™ Effecting the Homogenized Parameter

{ Boundary and Energy Group )

Left 1 Left 2 Top 1 Top 2
Effected cross section
Z.1 -1.63817e-01 -1.28786¢-02 -1.50316e-011 -6.51104¢-03
I, -191541e-01 -2.523908-01 1.47852¢-01 1.70663e-01
vI, -1.39412e-01 -2.18640e-03 -3.283428-Di -1.71949¢-02
vE;, -9.26842e-02 -2.27182e-01 -1.54664¢-01 -2.67946¢-01
L, 2 9.02151e-02 _ 6.398799,-0_3 7.41560e-02 2.60058¢e-03
Effected Edge-to-Average Flux Ratio ( Boundary and Energy Group )

Left } 4.8309642+00 6.51184e-01 -8.50719e-03 4.47398e-02
Left 2 2.83359%+00 4.88080e+00 1.57645e-01 1.36598e-01
Right 1 -2.11226e+00 -4.86653e-01 4.85361e-01 -3.88936e-02
Right 2 -2.31235e+00) ~1.64409e+00 -3.43236e-01 -3.42193e-01
Top i 5.70108e-01 4.84446¢-02 5.67083e+00 4.05644¢e-01
Top 2 1.09834e+00 5.09118e-01 3.51564e+00 5.88516e+00
Bottom 1 -1.07661e-01 -4.63285e-02 -2.10313e+00 -2.96652e-01
Bottom 2 -4.04043e-01 -3.46350e-011 -1.85592e+00 -9.88262e-01
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Table D.13. Correlation Coefficiénts for the PWR Fuel Assembly O without the Control

Rod Cluster Inserted.

Jid™ Effecting the Homogenized Parameter
{ Boundary and Energy Group )

Left 1 Left 2
Effected cross section

., 1.95973e-02 3.50736e-03

Z.., 1.02145e-02 2.3530613-02
vE;, 2,20165e-02 3.94226e-03
vI,, 1.58419¢-02 3.65152e-02
Z, -1.96876e-02 -3.51366e—b3

Effected Edge-to-Average Flux Ratio ( Boundary and Energy Group )

Left 1 6.81531e+00 1.35069e+00
Left 2 4934616400 6.31864¢+00
Right 1 -1.22142e400 -7.90438e-01
Right 2 -3,02291e+00 ~1.20513e+(X)
Top 1 -1.36733e-02 -1.13905e-03
Top 2 8.35435¢-03 3.82427e-02
Bottom 1 -1.35948e-02 -9.11243e-04
Bottom 2 8.47373e-03 3.85116e-02
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Table D.14. Comrelation Coefficients for the PWR Fuel Assembly D with the Control Rod

Cluster Inserted.

11$™ Effecting the Homogenized Parameter
{ Boundary and Energy Group )

Left 1 Left 2
Effected cross section
Z,. 1.35801e-02 2.31633e-03
) 2.00956e-03 -4.81990e-05
vE, 2.15350¢-02 3.64252¢-03
vZ, 1.58970e-02 3.15991e-02
T, 4 -1.2929%¢-02 -2.20775¢-03
Effected Edge-to-Average Flux Ratio ( Boundary and Energy Group )
Left 1 £.86038e+00 1.24913e+00
Left 2 5.07806e+00 5.83164e+00
Right 1 -3.29699+00 -7.32380e-01
Right 2 -3.12397e+00 -1.13688e+00
Top 1 -2.059688e-02 1.76619¢-03
Top 2 2.13577e-02 2.54384¢-02
Botiom 1 - <2.09688¢-02 1.76619¢-03
Bottom 2 2.13577e-02 2.54384e-02
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Table D.15. Correlation Coefficients for the PWR Fuel Asserably E without the Control

Rod Cluster Inserted.

I/1¢™ Effecting the Homogenized Parameter
{ Boundary and Energy Group )

Left 1 Left 2
Effected cross section
Z,, 1.94006e-02 3.74054e-03
Z., 9.16032e-03 2.30376e-02
v, 2.18969¢-02 4.22842¢-03
vI;, 1.50999e-02 3.79686e-02
B, -1.89775e-02 -3.66032e-03
Effected Edge-to-Average Flux Ratio { Boundary and Energy Group )
Left 1 6.80452e+00 1.47654e+00
Left 2 4.85324e+00 6.62846e+00
Right 1 -3.22305e+00 -8.73821e-01
Right 2 -3.00927e+)) -1.33125¢+00
Top 1 -152450&-02 -1.4562%-03
Top 2 6.03175¢-03 3.72158e-02
Bottom 1 -1.50588e-02 -1.07722e-03
Bottom 2 6.28130e-03 3.76852e-G2
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Table D.16. Correlation Coefficiénts for the PWR Fuel Assembly F without the Control
Rod Cluster Inserted.

J/$™ Effecting the Homogenized Parameter
{ Boundary and Energy Group )

Left 1 Left 2
Effected cross section
Z. 1917197e-02 4.02982e-03
Z,; 7.56073e-03 2.21616e-02
vI;, 2.1760%e-02 4.56948e-03
vI, 1.42464e-02 3.96635e-02
b I -1.82487e-02 -31.82752e-03
Effected Edge-to-Average Flux Ratio { Boundary and Energy Group )
Left 1 6.79144e+00 1.62973e+00
Left 2 4.75633+00 7.00487¢+00
Right 1 -3.22480&&60 -9.7?;?006—0]
Right 2 -2.99127e+00 -1.48906e+00
Top 1 -1.71088e-02 -1.90407¢-03
Top 2 3.56261e-03 3.58585e-02
Bottom 1 -1.67755e-02 -1,24497e-03
Bettom 2 4.03152e-03 3.66944e-02
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Table D.17. Correlation Coefficients for the BWR Fuel Assembly B with the Control
Blade Inserted and the Fuel Temperature Increased.

1/¢™ Effecting the Homogenized Parameter
( Boundary and Energy Group )

Left 1 Left 2 Top 1 Top 2

Effected cross section

e e L TS DT T e

z,, -1.59167e-01 -1.19594e-02 -1.62351e-01 -6.88622e-03
Z. -1.78316¢-0) -2.40294¢-0} 1.41356e-01 1.34441e-01
vE,, -1.40039¢-01 -2.49312e-03 -3.37843e-01 -1.65441e-02
vE, -9.47569-02 -2,18640e-01 -1.71772¢-01 -2.70070e-01
2. 9.26919¢-02 6.37985e-03 £.20562¢-02 2.86813e-03
Effected Edge-to-Average Flux Ratio { Boundary and Energy Group }
Left 4.56868e+00 6.19451e-01 -2.17617e-03 4.24558e-02
Left 2 2.65020e+00 4,59756¢+00 - 1.80632¢-01 1.20148e-01
Right 1 -1.89632e+00 -4.56745e-01 4,75730e-01 -3.71008e-02
Righ: 2 -2.06878e+00 -1.4954%e+00 -4.22182¢-01 -3.47964e-01 |
Top 1 5.18333e-01 4.41710e-02 5.95502e+00 3.87537¢-01
Top 2 9.92134e-01 4,35716e-01 3.83937e400 5.66853e+00
Bottom 1 -7.04395¢-02 - -4.2687%e-02 -2.36242e+00 -2.83177e-01
Bottom 2 -3.55457e-01 -3.29345¢-01 -2.11152e400 -9.71918e-01
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Table D.18. Correlation Coefficients for the BWR Fuel Assembly B with the Control
Blade Inserted and 40% Water Void.

Y™ Effecting the Homogenized Parameter
( Boundary and Energy Groop )

Left 1 Left 2 Top ! Top 2

Effected cross section

e o LT TP

Z., -1.3948%¢-01 -6.13984e-03 -1.30793e-01 -3.14052e-03
z,, -1.56548¢-01 -2.36947¢-01 1.38617¢-01 1.33462¢-01
vZ,, -1.15245¢-01 3.20623¢-04 -2.81611e-01 ~ -8.90055¢-03
vE, 4.53713e-02 -1.45989¢-01 -1.24800e-01 2.14402¢-01
2,4 7.19988¢-02 1.26890e-03 1.20412¢-01 3.44420¢-03
Effected Edge-to-Average Flux Raiio ( Boundary and Energy Group )
Left 1 3.61938e+00 3.29424¢-01) 3.11061e-02 2.78298¢-02
Left 2 1.93780e+00 3.54716e+00 1.21561¢-01 ©1.02221e-01
Right 1 -1.54059e+00 -2.43181e-(11 3.69176e-01 -2.50705e-02
Right 2 -1.60648e+00 -1.34160e+00 -2.54883e-01 -3.41277e-01
Top 1 4.22583¢-01 1.90082e-02 4.45380e+00 2.08407e-01
Top 2 6.26034¢-01 2.58863e-01 2.65030e+00 4.32716e+00
Bottom 1 -2.17901e-02 -1.94735e-02 -1.89672e+00 -1.66445¢-G1
Botiom 2 -2.63927e-01 -2.71391e-01 -1.61680e+00 -8 29075¢-01
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Table D.19. Correlation Coefficients for the BWR Fuel Assembly B with the Control

Blade Inserted and a Linear Gradient for the Fuel Cross Séctions.

Jid™ Effecting the Homogenized Parameter

{ Boundary and Energy Group )

Left 1 Left 2 Top 1 Top 2
Effected cross section

E,, -8.13728e-02 6.30496e-03 -1.667442-01 -5.80100e-03
Z,, -1.09044e-0] -1.84586e-01 1.29899¢-01 1.33111e-01
vE,, -5.80471e-01 1.67441e-(2 -3.38304e-01 -1.55679e-02
vE;, -1.74796e-02 -1,55470e-01 -1.69141e-01 -2.64482e-01
2, 9.14660e-02 6.71024e-03 7.90999¢-02 2.96814e-03

Effected Edge-lo-A#erage Flux Ratio ( Boundary and Energy Group )
Left 1 4.49116e+00 6.13736e-01 © .5.58387e-02 4.03997¢-02
Left 2 2.69929e+00 4.69651e+00 1.27426e-01 1.23620e-01
Right 1 -1.85303e+00 -4.46654e-01 5.30033e-01 -3.46115e-02
Right 2 -1.96320e+00 -1.42073e+00 -3.25423e.01 -3.34942¢-01
Top 1 5.16860e-01 4.49617e-02 5.68784e+00 3.91735¢-01
Top 2 1.01562e+00 4.55838¢-01 3.61040e+00 5.65058e+00
Bottom 1 -6.76669e-02 -4.20949e-02 -2.12676e+00 -2.84887¢-01
Bottom 2 -3.30645¢-01 -3.08014¢-01 -1.91835e+00 -9.49860e-01
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