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SUMMARY 

A method that makes it feasible to incorporate global reactor information into 

homogenized parameters used for nodal diffusion theory analyses was developed. Global 

reactor information can be used sucessfully to find homogenized parameters that are more 

accurate than infinite lattice homogenized parameters, but past approaches are expensive. 

An iterative method was developed that achieves the objective by using linear correlations 

to model changes in the homogenized parameters due to current-to-flux ratios from the 

nodal solution. 

A numerical approach was used to analyze several one- and two-dimensional 

geometries. The one-dimensional analyses showed that the edge-to-average flux ratio from 

the lattice homogenization should be correlated rather than the flux discontinuity factor. 

Accurate flux discontinuity factors axe then found from the edge-to-average flux ratio 

correlation. It was found that accurate correlations required a boundary condition, the 

shifted circle condition,, that is uncommon to transport theory codes. This boundary 

condition allows a current to be created on a node boundary but other higher odd 

moments of the angular flux are equal to zero. It was demonstrated that this effect caused 

the scalar flux on the surface of a node to be more accurate than other transport theory 
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boundary conditions. The one-dimensional analyses also showed that linear correlations 

are sufficiently accurate to model the global reactor effects on the homogenized 

parameters. 

Two-dimensional analyses of light water reactor assemblies demonstrated that the 

iterative procedure reduces the assembly power errors by a factor of two compared to 

using infinite lattice homogenized parameters without correlations. The analyses also 

confirmed that the method is independent of the flux approximation used in the nodal 

code and independent of the diffusion coefficients provided that reasonable diffusion 

coefficients are used. However, it was also shown that more accurate flux approximations 

and diffusion coefficients require only one or two adjustments to the homogenized 

parameters to achieve practical convergence on the homogenized parameters. 
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CHAPTER I 

INTRODUCTION TO NODAL ANALYSIS 

1.1 Development of Nodal Analysis Methods 

During the 1980' s, several nodal codes for the solution of me neutron diffusion 

equation developed into popular reactor analysis tools.1,2'3'4 Lawrence reported that the 

accuracies of nodal codes are the same factor of ten as fine mesh finite difference 

calculations for the IAEA benchmark problems.5 Despite their proven accuracy, there are 

some basic approximations in the 'nodal analysis routines. 

Development of nodal codes began in the 1960's with the FLARE6 code. The 

initial purposes of npdal codes were to serve as reactor simulators rather than detailed 

analysis tools. With this purpose in mind, a pin-by-pin analysis was not necessary so 

nodal codes modelled an entire fuel assembly as one node. The FLARE code used a 

one-and-a-half group model ( no thermal leakage ) and adjusted reactor parameters such 

as reflector albedos to fit actual operating experience. Due to these approximations, early 

nodal codes of the FLARE type could diverge from a solution in the limit of infinitely 

small mesh spacing. To avoid this problem, consistently formulated nodal codes1'35 ( or 

modern nodal codes ) began emerging during the 1970's. These codes avoid the use of 

empirical parameters and reflector albedos and use higher ordered flux approximations.5 

This allows consistently formulated nodal codes to converge and yield accurate results in 
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the limit of an infinite number of spatial meshes. Tins is also a feature of finite difference 

equations. As the mesh spacing decreases, the Taylor series approximation for derivatives 

becomes more accurate.7 A distinction between nodal diffusion theory and fine mesh 

finite difference is the transverse integrated procedure. In this procedure, the diffusion 

equation is integrated over the transverse directions to supply leakage terms. In essence, 

nodal diffusion equations are one-dimensional equations with known leakages in the 

transverse direction. Conversely, finite difference equations solve for fluxes in all 

surrounding nodes. 

After consistently formulated nodal codes developed, the question remained how 

to generate homogenized reactor parameters from the heterogeneous node. Nodal codes 

model a large heterogeneous region of the reactor ( often an entire fuel assembly ) as a 

single homogeneous node by using equivalent homogenized parameters. The equivalent 

homogenized parameters are cross sections and diffusion coefficients that represent the 

region or node. Also included as homogenized parameters are heterogeneity factors or 

flux discontinuity factors which add freedom to the equation set to allow one solution 

method to give results equivalent to another solution method. Equivalent homogenized 

parameters are discussed in Section 1.2. In the late 1970's, Koebke provided the first 

homogenization technique capable of reproducing exact reference results. Exact refers to 

a known reference solution such as a heterogeneous transport theory solution. Koebke 

named this homogenization method equivalence theory8,9 because it allowed a nodal 
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diffusion theory solution to yield equivalent results from a reference solution. Smith later 

developed a different approach called generalized equivalence theory.10'11 

The global reactor calculation provides integral information concerning each node. 

This information is volume integrated reaction rates and fluxes and surface integrated 

currents of the node. However, in addition to integral results, a reactor analysis also needs 

to supply local parameters, such as individual fuel pin powers. Much work during the 

1980's addressed this dehomogenization problem.8'912'13,14 There are three ways to 

calculate local information. One method uses the surface integrated currents as boundary 

conditions to a detailed heterogeneous calculation. This method is accurate but also 

expensive. The second method is simply to combine global flux tilts in a node with a 

form function created during the homogenization process. The homogenization process 

renders detailed information about heterogeneities within the node. Specifically, an 

intranodal flux shape is available. The intranodal flux shape provides a form function for 

the power output of each pin in the node without accounting for the global flux shape in 

the node. This method is computationally cheap but also less accurate. It superimposes 

the x and y direction flux shapes in a node together as an approximation to the global flux 

shape for that node. This action often overpredicts the flux along the perimeter of the 

node and especially at the corners of the node. Another method uses global reactor 

information to approximate corner point fluxes for each node. Corner point fluxes 

eliminate the error of overpredicting the global flux shape along the perimeter of the node 

and as a result, reduce errors throughout the node. This method does not use the principle 

3 



of superposition to multiply the x and y direction flux shapes together, but uses a more 

analytic solution to obtain the global flux shape in the node. The method is both accurate 

and inexpensive. 

In conclusion, nodal analyses consist of three distinct steps.9 The homogenization 

process collapses each heterogeneous node into a set of equivalent homogenized 

parameters required by the nodal code. Then, the nodal code calculates integral results of 

a global reactor solution and lastly, the dehomogenization process finds local reactor 

characteristics. Since global reactor information is unavailable during the homogenization 

process, the homogenized parameters do not account for the effect that neighboring nodes 

have on them. There are several methods to include these interassembly effects into the 

homogenized parameters, however., methods previously developed are expensive and, as 

a result, are impractical to employ in the nodal analysis procedure. In this thesis, a 

method that is feasible for including interassembly effects to improve the accuracy of the 

homogenized parameters is presented. Also, it is shown that the improved homogenized 

parameters improve the accuracy of the global reactor solution. 

1.2 Formally Exact Homogenization Schemes 

In this section, we will assume that an exact solution ( or reference solution ) is 

available and can be used to find homogenized parameters. It is proven that traditional 

flux-weighted constants and an additional homogenization parameter are necessary to 
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reproduce integral results of the reference solution. This exercise serves to develop theory 

needed in calculating homogenized parameters for practical cases. 

The goal of homogenization is to preserve certain integral properties8'101115 of each 

node. Koebke provides the following two postulates8 that define a homogenized node to 

be equivalent to the same heterogeneous area. 

"Postulate A: The integral flux and integral reaction rates are conserved 
in the homogenized area. 

i ; - f 

Postulate B: The integral net current? and [Integral fluxes are conserved 
at each interface of this area." 

If the integral reaction rates and net currents are conserved, then the neutron balance 

equation from a nodal code is equivalent to the volume integrated neutron balance 

equations of a heterogeneous reference solution. This ensures that the multiplication factor 

of the nodal code will be identical to the reference multiplication factor. For the nodal 

neutron balance equation to be equivalent to a reference case, we only need to conserve 

reaction rates within the node and the sum of the leakages over all faces of the node. 

However, the second postulate states more than the sum of the leakages on all faces. The 

second postulate requires conservation of the net current along each surface. Koebke 

stated this postulate to ensure thai: the coupling of the neutron current between adjacent 

nodes is correct. The first postulate also contains a condition on the average flux in the 

volume. This condition provides a way to find equivalent homogenized cross sections 
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before obtaining a nodal solution. Conserving the suiface integrated fluxes provides a 

method to account for deficiencies in the nodal code flux approximation. 

We preserve reaction rates by requiring 

a = a,t,f,..:etc., 
9 = 1.2....G 

(1.1) 

where a is a cross section type and g is the energy group. The symbols " and ~ refer to 

homogeneous and heterogeneous values, respectively. By definition, the homogenized 

cross section is a constant parameter throughout the volume of the node. Therefore, we 

can remove it from the volume integral on the left side of equation (1.1). Koebke's first 

postulate states that the volume integral of the flux in the homogenized area must equal 

the volume integral of the flux in the heterogeneous area, or 

fyj>g(T) dv = fvq>g(r) civ. (i.2) 

Thus, the proper homogenized cross section is 

/„s0i,(r)*,cr)dv 

j *ff(r)dv 
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Using Fick's law, we preserve the surface integrated currents on a particular 

surface, k, by requiring 

- / ^ / v f y O - d S = /s»J^)-dS (1.4) 

where the diffusion coefficient is constant along the surface of the node. The proper 

homogenized diffusion coefficient is 

D* -• - - ^ . (1-5) 
/ s / V^(f ) -dS 

Equation (1.5) is the only method to define rigorously correct diffusion coefficients 

simply because diffusion theory is based on Fick's law, equation (1.4). The numerator of 

equation (1.5) is a value from the reference solution and therefore creates no problem for 

defining a diffusion coefficient ( assuming the reference solution is known ). However, 

the denominator of equation (1.5) is dependent on the nodal code flux approximation. For 

most flux approximations, the derivative in the denominator of equation (1.5) is a known 

function of the volume integrated flux and the surface integrated edge fluxes. From 

Koebke's two postulates, these values are also known from the reference solution. 

Therefore, it is easy to find a diffusion coefficient for each surface of each node in the 

global reactor problem. 
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However, specifying a different diffusion coefficient for each node surface is not 

a common practice in reactor physics. The common practice is to use the divergence 

theorem16 to transform the surface integrals of the neutron currents into volume integrals 

and specify one diffusion coefficient for each energy group that is valid on all surfaces 

of the node. Equation (1.6) demonstrates the divergence theorem applied to the leakage 

term in the diffusion equation. This action makes all terms in the neutron balance 

equation volume integrals rather than a mixture of volume integrals and surface integrals. 

fskJg(?) • dS = / -£/v<fyT) • dS = / -Dg</V
2j>g(T) dV (1.6) 

It is extremely unlikely that equation (1.5) will produce the same diffusion 

coefficient for all surfaces of a node. Therefore, after applying the divergence theorem 

and designating one diffusion coefficient, it is impossible to reproduce the reference 

solution in a rigorous sense unless a degree of freedom is added to the nodal diffusion 

equations. The surface integrated current is an important term in the neutron balance 

equation and the average flux is crucial in calculating reaction rates. Consequently, the 

degree of freedom cannot be added to these variables. However, the surface integrated 

edge flux serves only in the flux coupling equation between adjacent nodes. Since there 

is no need to directly conserve the surface integrated flux, a degree of freedom can be 

added to this variable in a way that allows for reproduction of the reference surface 
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integrated edge flux. Equivalence theory provided the first method to define and employ 

the degree of freedom to the neutron balance equations and the coupling equations. 

Equivalence Theory8'9 

Equivalence theory is the name given to the first procedure capable of reproducing 

all integral quantities of a known solution. Koebke8,9 achieved this task by creating an 

additional homogenization parameter that he named the heterogeneity factor. This scheme 

assigns a heterogeneity factor to each surface of node / by 

f « ' s T^i • (L7) 

j » d s 

Koebke's method multiplies the surface integrated fluxes in the nodal equation by the 

heterogeneity factor to arrive at die reference surface integrated fluxes. This satisfies his 

second postulate on the surface integrated edge flux. 

Koebke limited the two heterogeneity factors that lie in a common direction to be 

identical. Thus, he relates the heterogeneity factors on the two opposite sides of a node 

( k and k' ) by 

f * - \k: (1-8) 

where the energy group subscripts are dropped for convenience. Figure 1.1 shows the 

geometry orientation for two adjacent nodes. 
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/+1 

k' 

Figure 1.1. Nomenclature Associated with Two Adjacent Nodes. 

10 



Under Koebkes' condition, there exists one and only one diffusion coefficient in 

each coordinate direction that can preserve leakages while the heterogeneity factors are 

equivalent on the opposite surfaces of the node. This is because equations (1.7) and (1.8) 

add only one degree of freedom to the diffusion equations per direction. This method 

treats the diffusion coefficient as a purely artificial quantity.11 The diffusion coefficient 

is not found from material properties within the node as it is with traditional flux 

weighted constants. The diffusion coefficient and heterogeneity factor are directionally 

dependent parameters in this method. This is due to the additional requirements for the 

net currents in the other directions. For example, in two-dimensional Cartesian geometries, 

there are four equations for the surface integrated fluxes ( equation (1.7)), four equations 

for the diffusion coefficients ( equation (1.5) ), and one equation for the average flux 

( equation (1.2) ). With the limit on the heterogeneity factor ( equation (1.8) ), the 

equations require directionally dependant diffusion coefficients. Nevertheless, the method 

can reproduce exact results. 

The heterogeneity factor is dependent on the flux approximation used in the nodal 

code. Different flux approximations will result in different edge flux values. This, in turn, 

will result in a distinct heterogeneity factor for any given flux approximation. Therefore, 

the flux approximation used to find the heterogeneity factor must be consistent with the 

flux approximation used in the nodal code. 

The use of heterogeneity factors requires us to modify the flux coupling equation 

between two adjacent nodes. In the actual reactor and in high order solutions, the flux is 
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everywhere continuous. The surface integrated reference flux of node / is equal to the 

surface integrated reference flux of node /+ 1 on the common surface. By employing 

equation (1.7), the flux coupling equation between nodes / and /+ 1 is 

ff/5,£f(T)dS = /c^f(r)dS = 
(1.9) 

. /-_* * * , (T) dS = f̂ , f . * * , (r) dS 

where face k and k' are displayed in Figure 1.1. 

Generalized Equivalence Theory10,11,15 

Smith improved Koebke's equivalence theory to form generalized equivalence 

theory. In this method, each surface of the node has a separate discontinuity factor 

independent of all others. This results in a degree of freedom for each surface of the node 

and each energy group. By making this change, the diffusion coefficient can have any 

arbitrary non-zero value. This allows the diffusion coefficient to be found from material 

properties of the node or by any other preferred method. Regardless of this value of the 

diffusion coefficient ( any non-zero value ), Ihe flux discontinuity factors have added 

enough degrees of freedom to the diffusion equations to allow Koebkes' two postulates 

to hold true. 

Smith defines the flux discontinuity factor the same as Koebke defines the 

heterogeneity factor in equation (1.7). The coupling equation is similar to that of Koebke 



with an important difference. The difference between the two coupling equations is that 

Smith's equation is face dependent while Koebkes equation is direction dependent. 

Because of this difference, equivalence theory has only one set of homogenized 

parameters that can satisfy Koebkes' two postulates while generalized equivalence theory 

has an infinite number of sets of homogenized parameters that satisfy the postulates. 

Both equivalence theory and generalized equivalence theory can reproduce exact 

results. An interesting feature of these methods is that exact results are obtainable even 

when we solve the diffusion equation by approximate methods rather than analytic 

methods91117 assuming again that the exact solution is known. This means that, in 

principle, flux discontinuity factors or heterogeneity factors correct for heterogeneities 

within the node and errors in the diffusion theory approximation. 

1.3 Approximations to Obtain Homogenized Parameters 

For a homogenization scheme to be of practical use, it must be able to 

approximate homogenized parameters without knowledge of a reference solution. The 

formally exact method described in the preceding section assumed that the exact solution 

is available for use. If the exact solution were available, then there would be no need to 

solve the nodal diffusion equations. This section describes the traditional homogenization 

method and the approximate methods of Koebke and Smith. 
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All of the homogenization methods discussed in this section analyze 

two-dimensional slices of the node rather than a three-dimensional node. The axial 

direction of a node usually does not contain any heterogeneities. Therefore, a 

two-dimensional model is appropriate. In some cases such as control rod insertion or grid 

spacers, the axial direction does have strong heterogeneities. Smith and others18 devised 

a method to account for these heterogeneities. 

Traditional Homogenization 

The traditional homogenization method models a fuel assembly as either one node 

or four nodes. The boundary conditions for the node are zero net current boundary 

conditions. If the currents were known, then we could use the currents as boundary 

conditions. However, at the time of homogenization, estimates for the current directions 

and magnitudes are unknown. Therefore, the best guess for the boundary conditions are 

zero net currents. Smith points out that homogenized parameters are primarily dependent 

on the heterogeneities within the node and of secondary importance on the location in the 

reactor.11 This statement supports the use of zero net current boundary conditions. 

After imposing these boundary conditions on a node, the neutron balance equation 

is solved to find a flux profile throughout the node,. There are several different methods 

available to solve the neutron balance equations.. These methods can range from 

continuous energy Monte Carlo methods to fine mesh finite difference methods. In 

traditional lattice homogenization, the flux profile is. used to flux and volume weigh the 

heterogeneous cross sections by using equation (1.3). There are many different methods 
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to calculate diffusion coefficients from the assembly calculation. ' Among these are flux 

and volume weighing either the diffusion coefficient or the transport cross section. 

However, we cannot employ equation (1.5) to define a diffusion coefficient because the 

currents ( numerator of equation (1.5)) are equal to zero. Thus, the diffusion coefficient 

would also equal zero. After making these approximations, enough information is 

available to evaluate equation (1.3) for estimated values of the homogenized cross 

sections and diffusion coefficients. Traditional homogenization methods implicitly 

assumed flux discontinuity factors or heterogeneity factors to be equal to unity. 

Examining equation (1.9) with unity discontinuity factors shows that these equations are 

equivalent to the traditional continuity of flux condition. 

Traditional homogenization still served as the basis for advanced homogenization 

methods after Koebke proved that an additional parameter was necessary. Both Koebke 

and Smith used the zero net current boundary condition to approximate homogenized 

parameters. Koebkes approximation is known as simplified equivalence theory.8 In both 

methods, all cross sections are flux and volume weighted. However, there are differences 

in how the diffusion coefficients and the flux discontinuity factors or heterogeneity factors 

are found in each method. 

Simplified Equivalence Theory89 

Due to the manner that Koebke defines the heterogeneity factor and due to the 

geometric symmetry of PWR assemblies, Koebke could derive simplified equivalence 

theory. Simplified equivalence theory allows a code that does not use heterogeneity 
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factors ( one that implies unit)' values ) to improve global solutions to the reactor 

problem. Also, the method finds the diffusion coefficient from actual material properties 

rather than treating it as an artificial value. 

Consider a two-dimensional slice of a fuel assembly that is perfectly symmetric 

about the center of the node. Equation (1.3) defines the homogenized cross sections of 

the node to be spatially constant. Therefore, if an assembly calculation uses zero net 

current boundary conditions, then the diffusion theory flux profile for the single assembly 

is constant throughout the node. By equation (1.2), the value of the flux is equal to the 

average value found from the heterogeneous assembly calculation. Therefore, the 

denominator of equation (1.7) is equal to the average flux from the heterogeneous 

assembly calculation. Since the heterogeneities in the region are symmetric, the surface 

integrated edge flux on all boundaries are equal to each other thus providing a value for 

the numerator of equation (1.7). Therefore, all surfaces have the same value for the 

heterogeneity factor. This satisfies Koebke's requirement for the heterogeneity factor 

( equation (1.8) ) and no restrictions have been placed on the diffusion coefficient. This 

allowed Koebke to calculate the diffusion coefficient; from actual material properties. 

Furthermore, the homogenized parameters have no directional dependencies and no limits 

are placed on the solution method for the diffusion equation. A single assembly 

calculation such as this corrects only for heterogeneities within the lattice. Since the 

currents are equal to zero on all surfaces, the method cannot correct for the flux 

approximation employed in the nodal code or an errant diffusion coefficient. 
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Koebke named this approximation simplified equivalence theory because he could 

deceive the nodal code and completely remove the heterogeneity factors from the 

diffusion equations. This allowed the nodal code to use the traditional flux coupling 

equation rather than the discontinuous flux coupling equation shown by equation (1.9). 

Nodal codes expand the second order derivative in the diffusion equation by 

approximating the derivative with an average flux and fluxes at the edges of the region. 

Koebke replaces the homogeneous edge fluxes in the diffusion equation with the 

heterogeneous edge flux by rearranging equation (1.7). This substitution incorporates the 

heterogeneity factor into the neutron balance equation ( nodal diffusion equation ) and the 

current coupling equations. The fluxes on the surface of the node are now the 

heterogeneous surface fluxes that are continuous at the node interfaces. Koebke separates 

the heterogeneity factor away from the surface fluxes by combining it with the diffusion 

coefficient. He defines a simplified diffusion coefficient by 

£ , = —'. (1-10) 

However, the diffusion equation multiplies the diffusion coefficient and average flux 

together. If the simplified diffusion coefficient replaces the actual diffusion coefficient, 

then, as a conservation principle, we must multiply the average flux by the heterogeneity 
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factor. In simpler terminology, we are multiplying and dividing this term by the 

heterogeneity factor. Thus, Koebke defines a simplified average flux as 

* / = f / * , . < U 1 > 

Continuing, if the simplified flux replaces the actual flux, then, as before, we must divide 

the cross sections by the heterogeneity factor to preserve reaction rates. Accordingly, 

Koebke divides all cross sections by the heterogeneity factor to form the simplified cross 

sections, 

£ = ^ii (1.12) 
• • ' - t , • 

Before starting the diffusion theory calculation, all cross sections and the diffusion 

coefficient for each node and energy group are divided by the heterogeneity factor of that 

node and energy group. This completely removes the heterogeneity factor from the 

neutron balance equation and the current coupling equations and allows use of the 

traditional flux coupling equation,. Once the diffusion calculation converges, the simplified 

average flux is divided by the heterogeneity factor to arrive at the actual average flux. 

The edge fluxes are the actual heterogeneous edge fluxes. 
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Generalized Equivalence Theory ' ^ 

Koebke's simplified equivalence theory works ideally for fuel assemblies that are 

one-eighth symmetric; however, BWR assemblies are only one-half symmetric at best. 

Asymmetric nodes must employ Smith's homogenization scheme. The assembly 

calculation with zero net current boundary conditions computes a flux shape throughout 

the node. As before, if the nodal cross sections are to be spatially constant, then the flux 

shape from a diffusion calculation on the single node is also constant and equal to the 

average flux of the heterogeneous assembly calculation. The heterogeneous assembly 

calculation provides surface integrated fluxes for the numerator of equation (1.7) and the 

above argument provides a value for the denominator of equation (1.7). For asymmetric 

regions, the surface integrated fluxes from the lattice calculation are not equal on all 

surfaces and therefore each surface of the node will have a different flux discontinuity 

factor. 

Since the flux discontinuity factors for the surfaces of a node are different, we 

cannot divide them into the cross sections and the diffusion coefficient for the node 

without creating several cross product terms. Therefore, we must incorporate the 

discontinuous flux coupling equation ( equation (1.9)) into the nodal code. 

Heterogeneity factors are not definable for asymmetric regions when the current 

boundary conditions are equal to zero. This is because the diffusion theory flux shape in 

a single node with zero net current boundary conditions is always flat despite the 

diffusion coefficient or the flux approximation employed in the nodal equations. 
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Therefore, it is impossible to define a heterogeneity factor when the heterogeneous 

assembly calculation computes different values of the surface integrated edge fluxes and 

when the diffusion theory flux profile is flat. As in Koebke's single assembly lattice 

homogenization technique, Smith's generalized equivalence theory corrects only for 

heterogeneities within the lattice and not for the nodal code flux approximation or 

discrepancies in the diffusion coefficient. 

In this thesis, we will from now on use flux discontinuity factors rather than 

heterogeneity factors to avoid the restrictions on directional dependencies and 

complications due to using zero net current boundary conditions on asymmetric lattices. 

1.4 Methods for More Accurate Homogenized Parameters 

There are schemes that can obtain more accurate homogenized parameters than the 

methods discussed in Section 1.3 but at increased computer expenses. The only error in 

the methods discussed in Section 1.3 is the zero net current boundary condition. A more 

accurate method must therefore have a better approximation for the boundary conditions 

used in the assembly calculation. There are two ways to accomplish this task. One method 

is to extend the geometry around the assembly calculation. The other is an iterative 

technique between the lattice homogenization process and the global reactor calculation. 

Extended Geometry Calculations 

Extended geometry calculations model the region of interest and its closest 

neighbors. There are different ways to perform extended geometry calculations. The two 
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models discussed in this segment still employ zero net current boundary conditions. Other 

methods not discussed can use periodic boundary conditions if the geometry shows 

periodic tendencies. For example, some reactors may arrange a small group of assemblies 

periodically thus providing a strong argument to use periodic boundary conditions. 

One extended geometry model surrounds the region of interest by all of its closest 

neighbors, as displayed in Figure 1.2.10 The solid lines in the figure represent node 

boundaries and assembly boundaries. Small squares within each node portray 

heterogeneities. The five-node extended geometry still employs zero net current boundary 

conditions but the boundaries are not next to the region of interest but on the neighboring 

regions. 

Since the material and geometric properties of the neighboring regions are most 

likely different from the region of interest, a'current will be present at each interface. The 

current-to-flux ratio ( using the average flux of the node ) of the extended geometry 

calculation will be a good estimate of that found from a global calculation. However, the 

current is an estimated value because the zero net current boundary conditions on the 

neighboring regions are estimates. Nevertheless, this extended geometry method provides 

better estimates of the current directions and magnitudes on each surface of the node than 

zero net current boundary conditions. This leads to a more accurate intranodal flux shape 

needed to homogenize cross sections, specify the diffusion coefficient, and calculate the 

flux discontinuity factors. 
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Figure 1.2. Five-Node Extended Geometry Representation. 
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Figure 1.3 displays another way to model an extended geometry calculation. This 

design is the color set or supercell design.20 Assemblies of common geometric 

characteristics and burnup are assigned a similar color. The four assembly portions form 

a color set when located next to one another. This layout is useful for PWR assemblies 

because of their symmetry. The current at the center of a symmetric assembly will be 

closer to zero than at a boundary where material properties between adjacent nodes are 

different. As before, the solid lines distinguish the node boundaries. The dashed lines are 

assembly boundaries. Figure 1.3 shows four nodes per assembly. We can estimate that the 

currents along the midplane of each assembly are near but not exactly equal to zero. 

Therefore, this method also assumes zero net current boundary conditions. The interior 

solid lines of the figure are node boundaries where larger currents are expected. 

Although the boxed area of Figure 1.3 is the same size as an assembly, this 

method does require more computer resources than the single assembly calculation. If 

each assembly is symmetric, the single assembly calculation discussed in Section 1.3 can 

use this knowledge to model only one-eighth of'the assembly. Thus, the color set model 

would be eight times larger than the single assembly model. This design also increases 

computer resources because the color sets are location dependent. As an approximation, 

there is the same number of color sets in a reactor as there are assemblies. In the single 

assembly calculation, there are several assembly types that we can use at any location in 

the reactor. Although the number of color set calculations can be reduced, there are still 

many more combinations of color sets than there are assembly types. 

23 



• • • HI 1 

m • 

1 • 

am 
111 I m 

• D 1 II • i m 

• II 1 II 

1 III 

n i 

n i 

i • 

i • • II 1 III H 1 

i • 

i • 

• • III • 1 i • 

Figure 1.3. Color Set Extended Geometry Representation. 
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Iterative Techniques 

At the end of the global calculation, approximate values for the currents are known 

compared to average fluxes in the node. These currents can be used to aid in finding more 

accurate homogenized parameters. Because zero net current boundary conditions were 

used to calculate the homogenized parameters for the global reactor calculation, the 

currents retrieved from the global reactor calculation aire approximate values, but they are 

exceedingly good approximations. The information from the global reactor solution can 

be employed in one of three ways to improve the homogenized parameters. The currents 

can serve as boundary conditions to rehomogenize the node and then the improved 

homogenized parameters used in the global calculation to obtain more accurate global 

results. Another method uses response matrices and the global reactor information to 

update the homogenized parameters. A third method uses the global reactor information 

to adjust the homogenized parameters based on correlations. 

The rehomogenization approach is an expensive process. Many nodes in a reactor 

are similar in material composition and geometric form, but all nodes will have different 

currents across their boundaries. This means that each node will need homogenization 

again using the currents from the global reactor solution. This leads to more accurate 

homogenized parameters, but the computer resources needed to rehomogenize each node 

makes this an unattractive process. 

Smith showed that this method cam successfully improve values for the 

homogenized parameters. Smith used fine mesh diffusion calculations to find 
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homogenized parameters.10 After completing a global calculation using infinite lattice 

homogenized parameters, the currents and assembly powers serve as input conditions to 

rehomogenize each assembly. The resulting set of homogenized parameters were closer 

to reference values than the infinite lattice homogenized parameters. This, in turn, leads 

to a more accurate global reactor solution. The preceding steps form one iteration. In 

Smiths' examples, the method converged in very few iterations (two or three iterations ). 

Another iterative method studied by Cheng, Hoxie, and Henry17 employed response 

matrices to update the homogenized parameters. This method computes response matrices 

based on a net current across segments of a node face rather than partial currents. In the 

conventional response matrix method,7 the response matrices reflect how outgoing partial 

currents change due to an incoming partial current on only one surface. The conventional 

response matrix method does not directly produce a surface integrated edge flux needed 

to compute discontinuity factors. By basing the response matrices on net currents, the 

surface integrated flux is available and discontinuity factors are obtainable. This method 

also updates homogenized cross sections. However, the method finds net current response 

matrices from partial current response matrices. In several cases studied by Cheng, Hoxie, 

and Henry, the response matrice technique for improving homogenized parameters 

moderately improved the accuracy of the homogenized parameters and the global solution. 

Koebke8 and Rahnema21,22 have introduced the concept of correlating the 

homogenized cross sections to global reactor information. They rendered general forms 

for correlations that the homogenized cross sections should follow. Both Koebke and 
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Rahnema propose the same characteristics. In the correlation equations, the homogenized 

parameters change as a function of the current-to-flux ratio. The correlations are linear 

and therefore contain no cross product terms. Their correlation is 

S<7,cr ~ 2<7,a 

G K J 
9 
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(1.13) 

In this correlation, the homogenized cross section, E , would change as the current-to-flux 

ratio deviates from the zero net current value used to calculate the initial homogenized 

cross section, 2 ° . 

To increase the accuracy of the global reactor calculation, the homogenized cross 

sections and flux discontinuity factors must be improved simultaneously. Smith showed 

that reference homogenized cross sections used with infinite lattice flux discontinuity 

factors actually leads to greater errors than using all infinite lattice homogenized 

parameters.11 Similarly, he also showed that using infinite lattice cross sections with 

reference flux discontinuity factors also leads to greater errors than using all infinite 

lattice homogenized parameters. Therefore, equation (1.13) should apply not only to the 

homogenized cross sections but to the flux discontinuity factors as well ( or a relationship 

involving the flux discontinuity factors ). Smith states that these errors arise because the 

infinite lattice cross sections and flux discontinuity factors are a matched set of 

equivalence parameters.11 This implies that any further improvements also should match 
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the infinite lattice calculation method. In particular, the same method used in lattice 

homogenization should decide any correlation parameters. 

Equation (1.13) provides some promising '.characteristics. If it is possible to find 

k 

the correlation coefficients aga before starting the global reactor calculation, then the 

homogenized parameters can be adjusted during operation of the nodal code as needed. 

This allows us to improve the accuracy of the global reactor solution without iterating 

between the nodal calculation and the lattice homogenization calculation. Also, 

equation (1.13) implies that the homogenized parameters and correlation coefficients are 

independent of position in the reactor. If true, the correlation coefficients apply to all 

similar assemblies much like the infinite lattice homogenized parameters. 

In an iterative technique such as this, the question arises if the solution converges 

toward or diverges away from a reference solution. Smith answered this question by first 

calculating a global reactor solution using a homogenization code (the homogenization 

code was a fine mesh finite difference calculation ). Then he performed an iterative 

technique coupling the homogenization code and the nodal code. The homogenization in 

this case was on each node. Smith showed that the global solution of the iterative 

technique converged toward the global solution solved by the lattice homogenization 

code.10 However, the solution will not converge exactly to this reference solution because 

the currents from the nodal code are surface integrated values. Thus, the current across 

a node face has no shape and the accuracy reduces. 
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1.5 Objectives 

The objective of this thesis is to find a feasible method to use global reactor 

information to improve homogenized parameters used in nodal diffusion theory. The 

method should be applicable to multiple dimensions and multiple energy group analyses. 

The lattice homogenization code should be of any analysis type. Since lattice 

homogenization codes usually employ a transport theory method, work in this thesis also 

employs transport theory. Extended geometry and response matrix techniques for 

improving the accuracy of homogenized parameters are undesirable because of their 

increased computer resources. Also, iterative methods that completely rehomogenize each 

node are too expensive for the analysis also. 

An iterative method that updates the homogenized parameters by correlations does 

appear attractive. For extremely simple geometries, correlations can be found by applying 

perturbation theory or variational analysis. However., these techniques are not used in this 

thesis because of the difficulty involved in lattice homogenization. Usually, lattice 

homogenization involves twenty energy groups20 or more and trends in the nuclear 

industry are moving toward explicitly modelling all details of the fuel assembly, including 

explicit modelling of each fuel pin within the assembly.23'24'25 These concerns eliminate 

using perturbation theory or variational analysis to find correlation coefficients. Thus, the 

method used to find correlation coefficients is a numerical approach. This approach is 

much more feasible than other methods due to its simplicity. 
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Two computer codes were written for this thesis. A description of these computer 

codes is provided in Chapter II as well as validation results for the codes. One code is a 

lattice homogenization code that uses discrete ordinates and the other is a nodal diffusion 

theory code. The remaining chapters develop the procedure to improved the homogenized 

parameters. In Chapter HI, the method is developed in a one-dimensional geometry. This 

chapter discusses the dependency of the correlations to the energy groups and faces of the 

node. Also, a boundary condition necessary to obtain accurate correlations is introduced 

in Chapter HI. The correctness of the linear correlation approximation is addressed. In 

Chapter IV, the method is extended to two dimensions and the effect of using different 

flux approximations in the nodal code and different values for the diffusion coefficients 

is examined. Dependencies of the correlation coefficients are also examined. Lastly, a 

review of the method is given in Chapter V along with ideas for future research. 
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CHAPTER II 

ANALYSIS TOOLS 

2.1 Analysis Tools Overview 

Three different analysis tools aire employed in this thesis to examine methods for 

improving homogenized parameters. One tool is a. pin cell homogenization code. This 

code provides multigroup cross sections for each location in a fuel assembly. The second 

tool, a lattice homogenization code, collapses the pin cell cross sections to find 

homogenized parameters for each assembly. It-is essential that the lattice homogenization 

code can perform reactor calculations on multiple assemblies so that reference solutions 

are available. The final tool, a nodal diffusion theory code, uses the homogenized 

parameters in a global reactor calculation in an attempt to reproduce reference results. The 

goal of this chapter is to validate the use of these tools. 

The pin cell homogenization code used to calculate macroscopic cross sections is 

COMBINE/PC.26 COMBINE/PC starts, with'ENDF/B-Vers ion 5 cross sections and 

resonance parameters collapsed to 166 energy, groups. It uses the Nordhiem numerical 

method for resolved resonances and the Wigner rational approximation for unresolved 

resonances. COMBINE/PC also uses the Dancoff-Ginsburg correction factor and the ABH 

method for spatial homogenization. The Bl and B3 approximations to the Boltzmann 

transport equation calculate the neutron spectrum needed to collapse the fine group cross 
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sections into broad energy groups. Its use in this thesis is to provide reasonable and 

consistent values for two-group pin cell, water gap, and control cross sections. This code 

provides the P3 scattering cross sections used in Chapter III and the Px scattering cross 

sections used in Chapter IV. COMBINE/PC has been benchmarked to Monte Carlo 

techniques for cylindrical fuel rod cells, and several moderated and unmoderated critical 

assemblies.27 

JTC is the lattice homogenization code written for use in this thesis. JTC has 

several options that are uncommon to many transport theory codes. For instance, the code 

has a unique boundary condition specification. Rather than reflective, periodic, or albedo 

boundary conditions, the user enters values for the odd moments of the angular flux along 

each boundary for each energy group. This option allows greater flexibility in the 

boundary condition specifications. The code can also spatially homogenize distinct regions 

within the geometry. With this option, reference homogenized parameters for each fuel 

assembly in a global reactor problem are readily available. Another feature of JTC is that 

flux discontinuity factors and edge-to-average flux ratios are direct output values. 

Section 2.2 describes the lattice homogenization code in greater detail. 

Lastly, a nodal diffusion theory code, NDT, also written for this thesis, tests the 

homogenized parameters and any method to update them. NDT has the ability to update 

homogenized parameters during operation/Section 2.3 describes the nodal code in greater 

detail. Several different flux approximations are available in NDT. 
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2.2 JTC Description 

The neutronics and lattice homogenization routines of JTC are described in this 

section. As a general overview, the code uses the diamond difference approximation to 

the discrete ordinates transport equation. However, it stores only the moments of the 

angular flux in each coordinate direction. The code contains two levels of iterations. Inner 

iterations update the moments of the angular flux in each coordinate direction and the 

outer iteration is the power method for finding the eigenvalue. The code employs a 

two-step acceleration28 technique. 

From Henry7, the discrete ordinates transport equation including spherical 

harmonics is interpreted as 
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where Y and Y are the spherical harmonics function and its complex conjugate, 

respectively, 

/ and m are indexes to the spherical harmonics, 

d and d' are discrete directions, 

g and g' are energy groups, 

wtd, is the weight associated with direction d', 

keff is the effective multiplication factor, 

i|/ is the discretized angular flux, 

and £ = y\-/? sin 0 with /u. = cos 9 . 

The cross sections, o , are macroscopic cross sections but are written using the lower 

case sigmas to avoid confusion with summation signs. The spherical harmonic function 

is 

y£ = f ( ^ J l M ) i ;>/»(/,) exp(//770) (2.2) 
I (A/77)! ) 

where Pt (JJ,) is the associated Legendre polynomial. A direction, d, has known values 

of /j,, 0 and weights from the angular quadrature set. 

Integrating equation (2.2) over all © reduces the source term in the transport 

equation to a one-dimensional form ( m is art integer number ). This is equivalent to 

setting m equal to zero. In this case, the spherical haimonics function and its complex 

conjugate reduce to 
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causing the source term to become 

7-X, E *°'X + E E (2 A1) O^/MM,) < , (2-4) 

where L is the truncation order of die scattering cross section and <pf is the moment of 

the angular flux defined by 

D 
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In JTC, the indexes d and d' in the above three equations are only in the x direction. 

The source term in equation (2.4) depends on /j. and the x direction moments ( also a 

function of /u, ). Therefore, for m = 0 , the source term has no y direction dependencies. 

The y direction contributions appear for m * 0 in the spherical harmonics function. By 

neglecting the y direction components in the scattering terms, a simple method emerges 

for solving the two-dimensional discrete ordinates equation. 

JTC employs equations (2.3) through (2.5) when solving for the angular fluxes and 

their moments in the x direction. It finds the y direction angular fluxes and moments by 
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rotating the axis. In this case, we replace the direction cosine ju with £ in equations (2.3) 

through (2.5). This provides identical equations necessary for finding the y direction 

angular fluxes and moments. Pivoting the directional sweeps is a common method 

employed in many multidimensional boundary value problems. This approach is named 

the ADI ( alternating direction implicit29'30 ) method. 

The purpose of JTC is a fuel assembly homogenization code. In such calculations, 

there is a large amount of fission throughout the geometry. Thus, anisotropic scattering 

is less important in these type problems than in deep penetration shielding calculations, 

for example. This means that neglecting the m ^ 0 terms in the spherical harmonics 

function is a reasonable assumption. 

The outer iteration process converges to an eigenvalue, keff, using the power 

iteration method. This process is expressed mathematically by 
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(2.6) 

where the superscript p is the iteration index. At the beginning of an iteration, the 

method computes the total neutron source in the geometiry from fission at iteration p and 

divides by the eigenvalue of that iteration. The upcoming inner iterations use the 

eigenvalue at iteration p. At the end of the inner iteration sweeps, the updated values 

for the scalar fluxes (index p + 1 ) cause the source term to change. Equation (2.6) 
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